
Supplementary Appendix for
“Robustness, Heterogeneous Treatment Effects,

and Covariate Shifts”

Pietro Emilio Spini

July 2024

1 General divergences
In this section I extend the theory of least favorable classes by considering different

φ divergence measures. To this end I leverage the thorough treatment of φ divergences
in Christensen and Connault [2023]. The Kullback-Leibler divergence is a special case
of a more general construction, known as φ-divergence. It is introduced below:
Definition 1 (φ-divergence). Consider the φ-divergence between FX and F ′

X given
by:

Dφ(F ′
X ||FX) :=

∫
φ

(
dF ′

X

dFX

)
dFX

where φ is a convex function with φ(1) = 0 and dF ′
X

dFX
is the Radon-Nikodym derivative

of the probability distribution F ′
X with respect to the probability distribution of FX ,

provided that P ′
X ≪ PX for the respective measures. For example the choices φ(t) =

t log t and φ(t) = 1
2 |t − 1| give rise to the KL-divergence and to the total variation

divergence (TV) respectively.

There may be a reason to choose a different φ-divergence metric instead of the
KL-divergence. Under suitable conditions, the construction of the proposed robust-
ness metric will change in magnitude, since now the (pseudo)-metric on the space of
distributions of the covariates is different. A closed form solution analogous to Theo-
rem 8 is available. The characterization of the δ∗ now depends on φ(·). In particular
it is fully characterized in terms of the Fenchel-conjugate of φ and its derivative.
Definition 2 (Fenchel-Conjugate). Given a topological vector space Z and convex
function φ : Z → R, the Fenchel-conjugate φ∗ : Z∗ → R, defined on the dual space of
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Z, is defined by:
φ∗ : z∗ 7→ sup

z∈Z
⟨z∗, z⟩ − φ(z)

Then we can have a generalization of the policy-maker’s problem in Equations (4)
and (5) for an arbitrary φ divergence in 1:

inf
F ′
X : P ′

X≪PX ;P ′
X(X )=1

Dφ(F ′
X ||FX) (1)

s.t.

∫
X
τ(x)dF ′

X(x) ≤ τ̃ (2)

From the KKT Theorem (Theorem 1, Ch.8, Sec. 3 in Luenberger [1997]) we can write
the problem as:

sup
λ∈Λ

sup
ξ

(
inf

F ′
X : P ′

X≪PX ;P ′
X(X )=1

Dφ(F ′
X ||FX) + λ

∫
X

(τ(x) − τ̃)dF ′
X(x) + ξ

(∫
X
dF ′

X(x) − 1
))
(3)

where and ξ is the Lagrange multiplier for integration to 1 (i.e. it is a probability
measure), λ is the Lagrange multiplier for the policy-maker’s claim. The convexity
conditions for Theorem 1, Ch.8, Sec. 3 in Luenberger [1997] are immediate to verify.
The interior condition, analogous to a Slater condition, is satisfied by Assumption
4. Note that the convex cone where the Lagrange multiplier takes values is R+ (or
R− if the policy-maker’s claim is ATE ≤ τ̃ instead). In Equation (7) the Lagrange
multiplier λ is a 1-dimensional parameter. Notice that after fixing the experimental
distribution F ∗

X , the map DKL(·||FX) is convex in its first argument. Notice that, the
Radon-Nikodym derivative dF ′

X

dFX
(x) ≥ 0,∀x ∈ X . We can express the inner problem

as:

inf
F ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

(
φ

(
dF ′

X

dFX
(x)
)

− (−λ(τ(x) − τ̃) − ξ) dF
′
X

dFX
(x)
)
dFX(x) − ξ

and recognize that, by rewriting the infimum as the supremum with a negative sign,
we can substitute the expression for the Fenchel-conjugate of φ if we can interchange
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the supremum and integration1. Using the definition of Fenchel-conjugate:

inf
F ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

(
φ

(
dF ′

X

dFX
(x)
)

− (−λ(τ(x) − τ̃) − ξ) dF
′
X

dFX
(x)
)
dFX(x) − ξ

= − sup
F ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

−
(
φ

(
dF ′

X

dFX
(x)
)

− (−λ(τ(x) − τ̃) − ξ) dF
′
X

dFX
(x)
)
dFX(x) − ξ

= −
∫

X

(
sup
x∈X

z (−λ(τ(x) − τ̃) − ξ) − φ(z)
)
dFX(x) − ξ

= −
∫

X
φ∗(−λ(τ(x) − τ̃) − ξ)dFX(x) − ξ

Substituting this back into the outside problem one obtains:

sup
λ∈Λ

sup
ξ

∫
X

−φ∗(−λ(τ(x) − τ̃) − ξ))dFX(x) − ξ

which can be maximized with respect to ξ and delivers the first order condition,
evaluated at ξ∗: ∫

X
φ̇∗(−λ(τ(x) − τ̃) − ξ∗)dFX = 1

where φ̇∗(·) is the derivative of φ∗(·) with respect to its argument. Observe that,
for the KL divergence, the Fenchel-conjugate of φ(t) = t log(t) is given by φ(t∗) =
exp(t∗ − 1). Plugging this in and solving for ξ∗ here delivers:

ξ∗ = log
(∫

X
exp(−λ(τ(x) − τ̃ − 1))dFX(x)

)

Now differentiating with respect to λ we obtain
∫

X
φ̇∗(−λ∗(τ(x) − τ̃) − ξ∗)(τ(x) − τ̃ + ξ̇∗

λ)dFX(x) − ξ̇∗
λ = 0 (4)

where ξ̇∗
λ is the derivative of ξ∗ with respect to λ and λ∗ is the value that implicitly

solves the moment condition in Equation (4). Observe that plugging Equation (1)
into Equation (4) allows to simplify it to:

∫
X
φ̇∗(−λ∗(τ(x) − τ̃) − ξ∗)(τ(x) − τ̃)dFX = 0

1Hafsa and Mandallena [2003] contains a review of sufficient conditions for which this interchange
is valid.
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since the two terms in ξ̇∗
λ cancel out (by the envelope theorem). Moreover, if φ(·) is

the KL divergence like in the main body of the paper, then
∫

X
φ̇∗(−λ∗(τ(x) − τ̃)(τ(x) − τ̃)dFX · exp(−ξ∗) = 0

so the additional term exp(−ξ∗) > 0 can be dropped and Equation (4) recovers
Equation (7). In general, conditions that guarantee existence and uniqueness of the
least favorable distribution given a φ-divergence may be subtle. For a review, consider
Komunjer and Ragusa [2016].

2 Other Extensions

2.1 Partial identification of CATE

In this section, I consider the case where the main ingredient needed to identify
the robustness metric, τ(x) is only partially identified. This situation is important in
practice. For example, with one-sided noncompliance τ(x) is only partially identified.
In this section I will show that one can still recover bounds for δ∗(τ̃) that are robust to
this partial identification. In section 2.2, the covariate shift assumption allowed us to
write the ATE as a linear functional of the covariate distribution, greatly simplifying
the treatment. This linear functional is fixed because τ(x) is identifiable.

Suppose we can set identify τ ∈ T . For example τ(x) could be identified up to
a finite dimensional parameter or one could have an identification region where any
τ ∈ τ satisfies τ(x) ≤ τ(x) ≤ τ(x), that is, there are identification bands bounding
any τ ∈ T above and below. Then we can compute a conservative version of the
robustness metric define below:

δ∗(τ̃) := inf
τ∈T

inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX)

s.t.

∫
X
τ(x)dF ′

X(x) ≤ τ̃

Because now τ(·) is not identified, the problem above considers the least favorable
among the ones in the set T . Because τ controls the shape of the feasible set we can
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rewrite it as

δ∗(τ̃) := inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX)

s.t.

∫
X
τ(x)dF ′

X(x) ≤ τ̃ for some τ ∈ T

Now consider the constraint set as a collection of Fτ := {F ′
X :

∫
X τ(x)dF ′

X(x) ≤ τ̃} for
a given τ . It is immediate to notice that, if τ ′(x) ≤ τ(x) point-wise, then Fτ ⊆ Fτ ′ .
That is, if a CATE that is dominated point-wise (or in fact FX almost everywhere)
the constraint set admits a larger class of distributions. As a result, for τ we have, for
any τ ∈ T , Fτ ⊆ Fτ . But this greatly simplifies the problem since now it is enough
to write:

δ∗(τ̃) := inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX)

s.t.

∫
X
τ(x)dF ′

X(x) ≤ τ̃

so now the problem can be solved for the lower bound of the identified set. Again,
this interpretation amounts to considering robustness to the lack of identification the
CATE. A similar argument applies for the reverse inequality (ATE ≤ τ̃) and τ .

2.2 Re-evaluating policies over time

In the main paper, the policy-maker is concerned with extrapolating experimental
results to different policy contexts. In the application, this takes the form of extrap-
olating the Medicaid extension program to other states. In this section I show that
we can have an alternative interpretation that emphasizes changes over time rather
than across regions. According to this interpretation, the measure of robustness δ∗

captures the minimal change in demographic trends that is needed to invalidate a
particular policy conclusion.

Consider a time horizon t = −1, 0, 1, 2, · · · , T . Suppose that a policy is imple-
mented at time 0. For the covariate distribution at time 0, FX,0 the policy meets the
target τ̃ , that is, ATEFX,0 ≥ τ̃ . Now, we may worry that over time, the covariate
distribution might change from F0 in such a way that does not justify the policy any
longer. How does the covariate shift assumption translate in thus context? It requires
that the causal effect τFX,0(·) = τFX,t(·) for all t = 1, 2, · · · , T . That is, the CATE for
whichever time horizon it is defined, does not change for new cohorts who are newly
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treated. Here, a natural benchmark for comparison is given by the change between
the reference point and the pre-policy period t = −1. This benchmark is given by
δbenchmark = DKL(FX,−1||FX,0). In this case, if one finds δ∗(τ) > δbenchmark then the
policy-maker may be comforted by observing that the amount of variation needed
to invalidate the claim is larger than the natural variation that can be elicited from
the time trends. Of course, one could decide to formalize this notion since we could
seek to jointly characterize the asymptotic distribution of the vector of estimators
(δ̂∗(τ̃), δ̂benchmark)T which is beyond the scope of this paper.

2.3 Distributional treatment effects

The treatment of this paper has focused on ATE as the main causal parameter of
interest. The framework can be extended to other functionals. For example, consider
the distributional treatment effect, at pre-selected level y′, written as a functional of
the covariate distribution:

∆(y′) =
∫

X
FY1|X=x(y′|x) − FY0|X=x(y′|x)dFX(x)

Defining the conditional distributional treatment effect as ∆(y′|x) := FY1|X=x(y′|x) −
FY0|X=x(y′|x). We can then formulate the distributional equivalent of the policy-
maker’s problem:

inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX) (5)

s.t.

∫
X

∆(y′|x)dF ′
X(x) ≤ ∆̃(y′) (6)

Here, ∆̃(y′) fixes a particular conclusion on the distributional treatment effect at y′,
which may reflect the minimal threshold for the the policy to be cost effective. It is
clear that here ∆(y′|x) plays the role of a summary of the heterogeneity of distribu-
tional treatment effects. In the the policy-maker’s problem that targeted the ATE,
the same role was played by τ(x), the CATE. Under Assumption 2, ∆(y′|x) does
not depend on the distribution of FX . One can give conditions under which ∆(y′|x)
is identified in the experiment. One can obtain a result analogous to Theorem 8 to
characterize the least-favorable distribution F ∗

X and for the metric of robustness δ∗(∆̃)
for an experimental conclusion on distributional treatment effects. This is because
the constrain set is again in Equation (6) is linear in the distribution of covariates,
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which allows the machinery of Theorem 8 to apply. On should note that the metric of
robustness here considers a conclusion at a single point y′. That is, the least-favorable
distribution F ∗

X will re-weight the covariates to make the distributional effect at y′ no
larger than ∆̃(y′). One may of course always specify finitely many points y′

1), · · · y′
B

and control the respective distributional effects with thresholds ∆̃(y′
1) · · · ∆̃(y′

1), si-
multaneously. The solution F ∗

X , if it exists, is characterized by B-many Lagrange
multiplier per constraint, as the discussion in Section C illustrates. It is of course
possible that, given the heterogeneity of distributional effects in ∆(y′|x) the B-many
restrictions are incompatible, leading to no solution (and an arbitraly large value for
the robustness metric). It is also possible to specify a continuum of restrictions, given
by ∆̃(y′). While the theoretical problem could leverage the results for existence of con-
ditional information projections in Komunjer and Ragusa [2016], the computational
cost would be much more burdensome.

3 Locally infeasible problem
We have seen how the restriction in Assumption 4 is key to guarantee that a

solution to Equation (4) exists and that the associated δ(τ̃) is finite. There is a
partial extension to Theorem 8 with respect to a local violation of Assumption 4.
Consider a sequence of τ̃m converging to a boundary point τ̃b of the range of τ(X).
An example is depicted in Figure 1. Suppose the policy-maker’s claim is given by:
ATE ≤ τ̃m. For each τ̃m within the range of variation of τ(X), the policy-maker’s
problem has a solution, F ∗

X,m given by Theorem 8. This is because there is a sub-
population with covariates x such that τ(x) ≥ τ̃m. The least favorable distribution will
increase the weight on this sub-population. If τ̃ is on the boundary, for example τ̃ = 3
in Figure 1, the only sub-population that has τ(x) ≥ τ̃b is x = 0.6, concentrated on a
singleton. Distributions that put unit mass on singletons are not feasible in Equation
(5). For τ̃ = τ̃b, the feasible set is empty so there is no solution. Looking at the
sequence of least favorable distributions, F ∗

X,m, associated to the sequence τ̃m → τ̃b, is
there a limiting distribution to which the sequence F ∗

X,m converges in some sense?
Under some additional assumptions, one can show a type of concentration result for
the sequence of solutions obtained by applying the closed-from solution formula in
Theorem 8. If τ(x) is a single peaked function, that is, it achieves its maximum (or
minimum) at a single point, we obtain convergence in distribution of the sequence
F ∗
X,m to the Dirac distribution at the single peak, δxb .
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Figure 1: Local to boundary conditions. The lower panel displays the conditional average
treatment effect, τ(x) for a univariate variable X. The experimental distribution is in blue:
the uniform distribution. The gray segment on the left labelled L(PX) is the image of all
distributions supported on X under the map L : FX 7→

∫
X τ(x)dFX(x). For every point

in the interior, Theorem 8 holds and, for each τ̃m, there is an associated least favorable
distribution F ∗

X,m displayed in the upper panel. As the sequence of τ̃m approaches the
boundary of L(PX), the distributions concentrate around x = arg max τ(x) = 0.6.

Proposition 3 (Local to boundary τ̃). Let Assumptions 1-3 hold and let τ̃m → τ̃b ∈
∂L(PX). Assume that the pre-image τ−1(τ̃b) = Xb = {xb} ∈ X o is a singleton.
Further, let X be compactly supported, with density f(x) < M on X . Then the
sequence of least favorable distributions with τ̃m, denoted F ∗

X,m, converges weakly to
δxb, the Dirac delta distribution with point mass at xb, that is:

lim
m→∞

∫
X
g(x)dF ∗

X,m(x) →
∫

X
g(x)δxb := g(xb)

for g ∈ Cb(X ), the space of all continuous, bounded functions on X .

The point-mass distribution δxb is not a solution to Equation 4 with τ̃b because the
feasible set never includes point mass distributions unless X is discrete. Proposition
3 delivers the limit of the sequence of solutions in the sense of weak convergence.
This is a weaker that the notion of convergence induced by DKL. In particular when
dFX ≪ λLeb (the Lebesgue measure on Rk), DKL(dF ∗

X,m||δxb) = +∞ so the sequence
of solutions F ∗

X,m does not converge to δxb in DKL.2

2In fact, Posner [1975] showed that DKL is lower-semicontinuous, that is, if Pn → P weakly, then
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4 Proofs of additional results and lemmas

4.1 Proof of Lemma 21

Proof. First by definition of the KL-divergence we have:

DKL(F̃X ||F ∗
X) =

∫
X

log
(
dF̃X
dF ∗

X

)
dF̃X

=
∫

X
log

 dF̃X
dFX
dF ∗
X

dFX

 dF̃X
=
∫

X

(
log

(
dF̃X
dFX

)
− log

(
dF ∗

X

dFX

))
dF̃X

=
∫

X
log

(
dF̃X
dFX

)
dF̃X −

∫
X

log
(

exp(−λ(τ(x) − τ̃)∫
X exp(−λ(τ(x) − τ̃)dFX

)
dF̃X

= DKL(F̃X ||FX) +
∫

X
λ(τ(x) − τ̃)dF̃X

+
∫

X
log

(∫
X

exp(−λ(τ(x) − τ̃))dFX
)
dF̃X

= DKL(F̃X ||FX) +
∫

X
λ(τ(x) − τ̃)dF̃X + log

(∫
X

exp(−λ(τ(x) − τ̃))dFX
)

since F̃X ≪ F ∗
X ≪ FX and simple algebra. Rearranging we get:

log
(∫

X
exp(−λ(τ(x) − τ̃)dFX

)
= DKL(F̃X ||F ∗

X) −
[∫

X
λ(τ(x) − τ̃)dF̃X +DKL(F̃X ||FX)

]

4.2 Proof of Fact 10

Proof. First, F ∗
X ≪ FX simply implies p1 = 0 =⇒ p∗

1 = 0. Aside such a trivial case,
10 characterizes p∗

1
p1

. We solve for the Lagrange multiplier λ in 10 noting that:

τ̃ =
∫

X
τ(x)dF ∗

X

= exp(−λ(τ(1) − τ̃))τ(1)p1 + exp(−λ(τ(0) − τ̃))τ(0)(1 − p1)
exp(−λ(τ(1) − τ̃))p1 + exp(−λ(τ(0) − τ̃))(1 − p1)

limn→∞ DKL(Pn||Q) ≥ DKL(P ||Q). In this case we have +∞ > 0
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rearranging the denominator and since τ̃ is a constant, we obtain the condition

exp(−λ(τ(1) − τ̃))(τ(1) − τ̃)p1 + exp(−λ(τ(0) − τ̃))(τ(0) − τ̃)(1 − p1) = 0

And isolating each side and taking logs we obtain:

−λ = 1
(τ(1) − τ(0)) log

((τ̃ − τ(0))(1 − p1)
(τ(1) − τ̃)p1

)

Finally, replacing −λ in 9 we have:

p∗
1
p1

=
exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1 + exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(0)−τ̃
τ(1)−τ(0)

)
(1 − p1)

p∗
1 =

exp
(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1

exp
(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1 + exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(0)−τ̃
τ(1)−τ(0)

)
(1 − p1)

=

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

) τ(1)−τ̃
τ(1)−τ(0) p1(

(τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

) τ(1)−τ̃
τ(1)−τ(0) p1 +

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

) τ(0)−τ̃
τ(1)−τ(0) (1 − p1)

= 1

1 +
(

(τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

) τ(0)−τ̃
τ(1)−τ(0) − τ(1)−τ̃

τ(1)−τ(0) (1−p1)
p1

= 1

1 +
(

(τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

)−1 (1−p1)
p1

= 1
1 + τ(1)−τ̃

τ̃−τ(0)

= τ̃ − τ(0)
τ(1) − τ(0)

which, with τ̃ = 0, is the solution obtained in Equation (9).

Proposition 4. Let ϵ > 0. Then for τ̃ > infX τ(x) + ϵ, δ∗(τ̃) in Definition 4 is
decreasing in τ̃ .

4.3 Proof of Proposition 4

Proof. First denote the feasible set E(τ̃) := {FX ∈ F :
∫

X τ(x)dFX(x) ≤ τ̃}. Then,
GX ∈ E(τ̃) ⇐⇒

∫
X τ(x)dFX(x) ≤ τ̃ < τ̃ ′ for any τ̃ ′ > τ̃ so GX ∈ E(τ̃ ′). But

then E(τ̃) ⊆ E(τ̃ ′). Hence, because we are minimizing on a larger set of distributions
δ∗(τ̃) := infGX∈E(τ̃) DKL(GX ||FX) ≥ infGX∈E(τ̃ ′) DKL(GX ||FX) =: δ∗(τ̃ ′). If the feasi-
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ble set E has the reverse inequality, it follows immediately that δ∗(τ) is decreasing in
τ̃ . This monotonicity is preserved if the reverse inequality is considered.

4.4 Proof of Proposition 3

Proposition 3 (Local to boundary τ̃). Let Assumptions 1-3 hold and let τ̃m → τ̃b ∈
∂L(PX). Assume that the pre-image τ−1(τ̃b) = Xb = {xb} ∈ X o is a singleton.
Further, let X be compactly supported, with density f(x) < M on X . Then the
sequence of least favorable distributions with τ̃m, denoted F ∗

X,m, converges weakly to
δxb, the Dirac delta distribution with point mass at xb, that is:

lim
m→∞

∫
X
g(x)dF ∗

X,m(x) →
∫

X
g(x)δxb := g(xb)

for g ∈ Cb(X ), the space of all continuous, bounded functions on X .

Proof. First observe that by Theorem 8 and the fact that each τm ∈ Lo(PX) we can
construct the sequence of least favorable distributions F ∗

m,X satisfying:

dF ∗
m,X

dFX
(x) = exp(−λm(τ(x) − τ̃m))∫

X exp(−λm(τ(x) − τ̃m))dFX

λm :
∫

X
exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX = 0

Without loss of generality consider the case where τ̃b = maxX τ(x). First notice that
the sequence of λm defined above is decreasing and unbounded below. To see that
it’s decreasing observe that implicitly differentiating λ(τ̃):

∂

∂τ̃

∫
X

exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX(x)

= −∂λ

∂τ̃
(τ̃)

∫
X

exp(−λ(τ̃)(τ(x) − τ̃))(τ(x) − τ̃)2dFX

+ λ(τ̃)
∫

X
exp(−λ(τ̃)(τ(x) − τ̃))(τ(x) − τ̃)dFX

−
∫

X
exp(−λ(τ̃)(τ(x) − τ̃))dFX = 0

by the Dominated Convergence Theorem with envelope g = exp(2M) ·2M . Note that
by the definition of λ(τ̃) the second term is equal to 0. Isolating the derivative of λ
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with respect to τ̃ we have:

∂λ

∂τ̃
(τ̃) = −

∫
X exp(−λ(τ̃)(τ(x) − τ̃))dFX∫

X exp(−λ(τ̃)(τ(x) − τ̃))(τ(x) − τ̃)2dFX
< 0

so λ(τ̃) is strictly decreasing on its domain. Suppose λm ≥ −B for all m ∈ N , with
B > 0. Then:
∫

X
exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX ≤

∫
X

exp(B(τ(x) − τ̃m))(τ(x) − τ̃m)dFX

so taking the limit fro m → ∞, if PX(τ(x) ̸= τ̃b) > 0:

lim
m→∞

∫
X

exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX

≤ lim
m→∞

∫
X

exp(B(τ(x) − τ̃m))(τ(x) − τ̃m)dFX(x)

≤
∫

X
exp(B(τ(x) − τ̃b))(τ(x) − τ̃b)dFX(x) < 0

Then, there exist m∗ ∈ N such that
∫

X exp(λm∗(τ(x)−τ̃m∗))(τ(x)−τ̃m∗)dFX < 0 which
is a contradiction. So λm must be unbounded below. Because it’s a strictly decreasing,
unbounded below sequence, it must be the case that λm → −∞ as τ̃m → τ̃b. Now we
show convergence in distribution to δxb . Let φ(·) ∈ Cb. We want to show:

lim
m→∞

∫
X
φ(x)dF ∗

X,m(x) →
∫

X
φ(x)δxb(x) = φ(xb)

We have:
∫

X
φ(x)dF ∗

X,m(x) =
∫

X
φ(x) exp(−λm(τ(x) − τ̃b))dFX(x)∫

X exp(−λm(τ(x) − τ̃b))dFX(x)

=
∫

X
φ(x) exp(−λm(τ(x) − τ̃b))dFX(x)∫

X exp(−λm(τ(x) − τ̃b))dFX(x)

Noticing that λm < 0. Consider the change of variables y =
√

−λm(xb − x). Then

12



x = xb − y√
−λm

, dx = − dy√
−λm

. By the change of variable formula:

∫
X
φ(x) exp(−λm(τ(x) − τ̃b))f(x)dx∫

X exp(−λm(τ(x) − τ̃b))f(x)dx

=
∫
Rk φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ
(
xb − y√

−λm

)
− τ(xb)

))
f
(
xb − y√

−λm

)
1Y(λm)(y)dy∫

Rk exp
(
−λm

(
τ
(
xb − y√

−λm

)
− τ(xb)

))
f
(
xb − y√

−λm

)
1Y(λm)(y)dy

Note that, if X is compactly supported then f(x) = 0 outside of a compact set
K ⊆ Rk hence. Moreover, if f(x) < M we have the dominating function given by:

φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))
f

(
xb − y√

−λm

)
1Y(λm)(y)dy

≤ ∥φ∥∞M1K(y)

on Rk and
∫
Rk∥φ∥∞M1K(x)dx = ∥φ∥∞ · M · vol(K) < +∞. hence the assumptions

of the Dominated Convergence theorem hold. Then we have:

lim
m→∞

∫
Rk
φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))
× f

(
xb − y√

−λm

)
1Y(λm)(y)dy

=
∫
Rk

lim
m→∞

φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))
× f

(
xb − y√

−λm

)
1Y(λm)(y)dy

Now consider Taylor expanding τ(·) around xb. Because xb is a maximizer, the
Jacobian Jτ (xb) : Rk → R is the zero matrix, from first order conditions. Hence:

exp
(

−λm
(
τ

(
xb − y√

−λm

)
− τ(xb)

))
= exp

(
−λm

(
τ(xb) − Jτ (xb)

(
y√

−λm

)
+ 1

2 · 1
−λm

yTHτ (xb)y − τ(xb)
))

= exp
(1

2y
THτ (xb)y + o(1)

)

13



where Hτ (xb) is the k × k Hessian matrix of τ , evaluated at the maximizer xb. Also:∫
Rk

lim
m→∞

φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))
f

(
xb − y√

−λm

)
1Y(λm)(y)dy

=
∫
Rk
φ(xb) exp

(1
2y

TH(xb)y
)
f(xb)dy

= φ(xb)
∫
Rk

exp
(1

2y
TH(xb)y

)
f(xb)dy

Now the denominator can be treated identically to have:∫
Rk

lim
m→∞

exp
(

−λm
(
τ

(
xb − y√

−λm

)
− τ(xb)

))
f

(
xb − y√

−λm

)
1Y(λm)(y)dy

=
∫
Rk

exp
(1

2y
TH(xb)y

)
f(xb)dy

Now because xb is a maximizer, H(xb) is negative definite so the quantities above are
finite and the numerator is greater than 0. Finally:

lim
m→∞

∫
X
φ(x)dF ∗

X,m(x)

= lim
m→∞

∫
X φ(x) exp(−λm(τ(x) − τ̃b))f(x)dx∫

X exp(−λm(τ(x) − τ̃b))f(x)dx

= limm→∞
∫

X φ(x) exp(−λm(τ(x) − τ̃b))f(x)dx
limm→∞

∫
X exp(−λm(τ(x) − τ̃b))f(x)dx

=
φ(xb)

∫
Rk exp

(
1
2y

TH(xb)y
)
f(xb)dy∫

Rk exp
(

1
2y

TH(xb)y
)
f(xb)dy

= φ(xb)

Since φ(·) ∈ Cb was arbitrary, by the Portmanteau theorem, dF ∗
X,m

d→ δxb .

In the general case where Xb is not a singleton, it seems that the least favorable
distribution still concentrates around the uniform distribution on Xb, rather than any
distribution like in Figure 2. I leave this interesting case for future work.

4.5 Proof of Proposition 17

Proof. Suppose X = Rk, X ∼ N (µ, σ) and τ(x) = xTAx + xTβ + c. By Theorem 8
the Radon-Nikodym derivative of the least favorable distribution is given by Equation
(6) so the distribution of F ∗

X must have density:

14



Figure 2: Here τ(x) is quadratic, experimental distribution is uniform and there are two
peaks. It appears that the least favorable distribution concentrates around both peaks.

dµ∗
X :=

exp(−λ(τ(x) − τ̃)) exp(− 1
2 (x−µ)T Σ−1(x−µ))√

(2π)k det(Σ)
dx∫

X
exp(−λ(τ(x) − τ̃))

exp
(
− 1

2 (x− µ)T Σ−1(x− µ)
)√

(2π)k det(Σ)
dx

=
exp(−λ(xTAx+ xTβ + c− τ̃)) exp(− 1

2 (x−µ)T Σ−1(x−µ))√
(2π)k det(Σ)

dx∫
X

exp(−λ(xTAx+ xTβ + c− τ̃))
exp

(
− 1

2 (x− µ)T Σ−1(x− µ)
)√

(2π)k det(Σ)
dx

=
exp(−λ(xTAx+ xTβ + c− τ̃) − 1

2 (x− µ)T Σ−1(x− µ))dx∫
X

exp(−λ(xTAx+ xTβ + c− τ̃) − 1
2(x− µ)T Σ−1(x− µ))dx

=
exp(− 1

2 (x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))(Σ−1 + 2λA))(x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))dx∫
X

exp(−1
2(x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))(Σ−1 + 2λA))(x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))dx

×
exp(λc+ λτ̃ − 1

2µ
T Σ−1µ− 1

2 (Σ−1µ− λβ)(Σ−1 + 2λβ)−1(Σ−1µ− λβ))
exp(λc+ λτ̃ − 1

2µ
T Σ−1µ− 1

2 (Σ−1µ− λβ)(Σ−1 + 2λβ)−1(Σ−1µ− λβ))

=
exp(− 1

2 (x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))(Σ−1 + 2λA))(x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))dx∫
X

exp(−1
2(x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))(Σ−1 + 2λA))(x− (Σ−1 + 2λA)−1(Σ−1µ− λβ))dx

from which we can recognize the form of N (µ∗,Σ∗). The steps above follow from
completing the square and from the properties of exp(·).
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4.6 Proof of Proposition 11

Proof. Let Fr = (1 − r)F0 + rH for an arbitrary distribution H that satisfies
unconfounded-ness. Then Fr is a distribution because it’s a convex combination
of two distributions, and it satisfies unconfounded-ness. Then we have: EFr [Yd|X] =
EFr [Y |D = d,X]. We can obtain the distributional derivative of EFr [Y |D = 1, X] −
EFr [Y |D = 0, X] with respect to r and evaluate it at r = 0. Computing the derivative
of the moment condition with respect to r and evaluating it at r = 0 we have:

dE[g(W, θ, γ(Fr))]
dr

∣∣∣∣∣
r=0

= d

dr
E

[
exp(−λ0(γ1,Fr

(x) − γ0,Fr
(x) − τ̃)) − ν]

exp (−λ0(γ1,Fr (x) − γ0,Fr (x) − τ̃)) (γ1,Fr (x) − γ0,Fr (x) − τ̃)]

] ∣∣∣∣∣
r=0

=
∫

X

d

dr

[
exp (−λ0 · (γ1,Fr (x) − γ0,Fr (x) − τ̃))

exp (−λ0 · (γ1,Fr
(x) − γ0,Fr

(x) − τ̃)) (γ1,Fr
(x) − γ0,Fr

(x) − τ̃)

]
f0(x)dx

∣∣∣∣∣
r=0

=
∫

X

[
exp (−λ0 · (γ1,Fr

(x) − γ0,Fr
(x) − τ̃)) · (−λ0)

exp (−λ0 · (γ1,Fr (x) − γ0,Fr (x) − τ̃)) · (1 − λ · (γ1,Fr (x) − γ0,Fr (x) − τ̃))

]

× ∂

∂r
(γ1,Fr (x) − γ0,Fr (x))f0(x)dx

In order to characterize the contribution of the functional we have:
∂

∂r
(γ1,Fr

(x) − γ0,Fr
(x))

= ∂

∂r

∫
Y

y∫
Y(1 − r)dF0(y, 1, x) + rdH(y, 1, x)

((1 − r)dF (y, 1, x) + rdH(y, 1, x))

− ∂

∂r

∫
Y

y∫
Y(1 − r)dF0(y, 0, x) + rdH(y, 0, x)

((1 − r)dF (y, 0, x) + rdH(y, 0, x))

=
∫

Y y · [dH(y, 1, x) − dF0(y, 1, x)]
∫

Y(1 − r)dF0(y, 1, x) + rdH(y, 1, x)(∫
Y(1 + r)dF0(y, 1, x) + rdH(y, 1, x)

)2

−
∫

Y y[dH(y, 1, x) − dF0(y, 1, x)]((1 − r)dF0(y, 1, x) − dH(y, 1, x))(∫
Y(1 + r)dF0(y, 1, x) + rdH(y, 1, x)

)2

−
∫

Y y · [dH(y, 0, x) − dF0(y, 0, x)]
∫

Y(1 − r)dF0(y, 0, x) + rdH(y, 0, x)(∫
Y(1 + r)dF0(y, 0, x) + rdH(y, 0, x)

)2

+
∫

Y y[dH(y, 0, x) − dF0(y, 0, x)]((1 − r)dF0(y, 0, x) − dH(y, 0, x))(∫
Y(1 + r)dF0(y, 0, x) + rdH(y, 0, x)

)2

Below f0(d, x) =
∫

Y dF0(y, d, x) and the same holds for h(·). Evaluating this expres-
sion at r = 0 one obtains:∫
y · dH(y, 1, x)

f0(1, x) −
∫
y · h(1, x) · dF0(y, 1, x)

f0(1, x)2 −
∫
y · dH(y, 0, x)

f0(0, x) +
∫
y · h(0, x) · dF0(y, 0, x)

f0(0, x)2
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Combining it with the derivative of the moment condition w.r.t γ we have:

dE[g(W, θ, γ(Fr))]
dr

=
∫

Y×{0,1}×X

[
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)

exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))

]

×
(
d(y − γ1,F0(x))

πF0(x) − (1 − d)(y − γ0,F0(x))
1 − πF0(x)

)
dH(y, d, x)

or dE[g(W,θ,γ(Fr))]
dr =

∫
Y×{0,1}×X ϕ(w, θ, γ(F0), α(F0))dH(w) for

ϕ(w, θ, γ, α) =

 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×
(
d(y − γ1,F0(x))

πF (x) − (1 − d)(y − γ0,F0(x))
1 − πF (x)

)

=

 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×


α1,F0(x)
α0,F0(x)

T  d(y − γ1,F0(x))
(1 − d)(y − γ0,F0(x))




and αF0(X) :=

α1,F0(x)
α0,F0(x)

 =

 1
πF0 (X)

1
1−πF0 (X)

. Note that above ϕ(·) is the Riesz repre-

senter of the linear functional dE[g(W,θ,γ(Fr))]
dr

∣∣∣∣∣
r=0

: H → R2 which maps H to R2.

We have EF0 [ϕ(W, θ, γ0(X), α0(X)] = 0 by the law of iterated expectations. More-

over, for any distribution F , EF

D(Y−EF [Y |D=1,X])
πF (X) − (1−D)(Y−EF [Y |D=0,X]

1−πF (X)

∣∣∣∣∣∣X
 = 0.

4.7 Proof of Proposition 12

Proof. To show that they are Neyman orthogonal we verify the conditions for The-
orem 1 in Chernozhukov et al. [2020] in the Appendix. Let γ1,F (X), γ0,0(X) denote
EF [Y |D = 1, X],EF [Y |D = 0, X] respectively.
i) Equation (13) holds. This has been verified above.
ii)

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))Fr(dw) = 0 for all r ∈ [0, r̃):
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This is immediate by the law of iterated expectations

EFr [ϕ(W,γ(Fr), θ, α(Fr)]

= EFr [EFr [ϕ(W,γ(Fr), θ, α(Fr)|X]]

= EFr

[
v(X) · EFr

[(
d(y − γ1,Fr(X))

πFr(X) − (1 − d)(y − γ1,Fr(X))
1 − πFr(X)

) ∣∣∣∣∣X
]]

= EFr [v(X) · 0]

= 0

v(X) =

 exp (−λ · (γ1,Fr(x) − γ0,Fr(x) − τ̃)) · (−λ)
exp (−λ · (γ1,Fr(x) − γ0,Fr(x) − τ̃)) · (1 − λ · (γ1,Fr(x) − γ0,Fr(x) − τ̃))


iii)

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))H(dw) and

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))F0(dw) are

continuous at r = 0.
For a given H, we show that function b : r 7→

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))H(dw) is

continuous at r = 0. Take a sequence rm → r = 0, then ϕn(w) := ϕ(w, γ(Frm), θ, α(Frm))
converges H-almost everywhere to ϕ0(w) := ϕ(w, γ(F0), θ, α(F0)). Moreover we have
ϕm(w) ≤ F (w) for all m ∈ N with F ∈ L1(H). By the dominated convergence theo-
rem we have: b(rm) → b(0) which is the desired result.
An analogous argument applies to the integral with respect to F0. As a consequence of
Theorems 1,2 and 3 in Chernozhukov et al. [2020] ψ(w, γ, θ, α) is Neyman orthogonal.
We can also verify Neyman orthogonality directly from the form of the ψ̄ function.
In particular:

∂

∂r
E[ψ(W, θ, γFr

, αFr
)]

∣∣∣∣∣
r=0

= ∂

∂r
E[g(W, θ, γ) + ϕ(W, θ, γ, α)]

∣∣∣∣∣
r=0

= E

[
∂

∂r

[
exp (−λ0 · (γ1,Fr

(X) − γ0,Fr
(X) − τ̃))

exp (−λ0 · (γ1,Fr (X) − γ0,Fr (X) − τ̃)) (γ1,Fr (X) − γ0,Fr (X) − τ̃)

]

+ ∂

∂r

([
exp (−λ · (γ1,Fr

(X) − γ0,Fr
(X) − τ̃)) · (−λ)

exp (−λ · (γ1,Fr (X) − γ0,Fr (X) − τ̃)) · (1 − λ · (γ1,Fr (X) − γ0,Fr (X) − τ̃))

]

×
(
D(Y − γ1,Fr (X))

πFr
(X) − (1 −D)(Y − γ0,Fr

(X))
1 − πFr

(X)

))]
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= E

[[
exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (−λ)

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (1 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
∂γ1,Fr

(X)
∂r

− ∂γ0,Fr
(X)

∂r

)∣∣∣∣∣
r=0

−

[
exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (−λ)

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (1 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
D

πF0(X) · ∂γ1,Fr
(X)

∂r

∣∣∣∣∣
r=0

− (1 −D)
1 − πF0(X) · ∂γ0,Fr

(X)
∂r

∣∣∣∣∣
r=0

)

+
[

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (λ)2

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (−λ) · (2 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
∂γ1,Fr (X)

∂r
− ∂γ0,Fr (X)

∂r

)∣∣∣∣∣
r=0

×
(
D(Y − γ1,F0(x))

πF0(X) − (1 −D)(Y − γ0,F0(X))
1 − πF0(X)

)]

+
[

exp (−λ · (γF0(X) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (1 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
D(Y − γ1,F0(X)) · ∂

∂r

(
1

πFr
(X)

) ∣∣∣∣∣
r=0

− (1 −D)(Y − γ0,F0(X)) · ∂
∂r

(
1

1 − πFr
(X)

) ∣∣∣∣∣
r=0

)
= 0

The last equality follows by the law of iterated expectations. The first and second term
cancel out since E

[
D

πF0 (X)

∣∣∣∣X] = 1,E
[

1−D
1−πF0 (X)

∣∣∣∣X] = 1. The third term is 0 because
the nonparametric influence function is centered at 0 conditional on X. Moreover,
E
[
D(Y − E[Y |D = 1, X]

∣∣∣∣X] = 0 and E
[
(1 −D)(Y − E[Y |D = 0, X]

∣∣∣∣X] = 0 so

whenever ∂
∂r

(
1

πFr (X)

) ∣∣∣∣
r=0

and ∂
∂r

(
1

1−πFr (X)

) ∣∣∣∣
r=0

are integrable, the fourth term is also

0, since they are measurable with respect to σ(X). So ∂
∂r
E[ψ(W, θ, γFr , αFr)]

∣∣∣∣
r=0

= 0.
Observe that this result implies Neyman orthogonality with respect to the γ and
α functions separately as well. To show the Neyman orthogonality with respect
to γ and to set up the further results contained in Theorem 3 in Chernozhukov
et al. [2020], we build the following construction. Consider the linear space of
square integrable functions of X (with respect to some dominating measure), de-
noted as Γ = L2(X ). H is the closed set of distributions which is a closed subset
of the Banach space L1(Y0 × Y1 × X , µ) under some appropriate dominating mea-
sure µ. Denote the Hadamard differential of the conditional mean function at F0

as ∂γ(Fr)
∂r

: H → Γ. Denote the Hadamard differential for ψ̄(γ(Fr), α0, θ) at F0 as
∂E[ψ(W,γ(Fr),α(Fr),θ)]

∂r
: H → R2. Finally denote the Hadamard differential of ψ̄(γ, θ)
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with respect to γ as ∂ψ̄(γ,α,θ)
∂γ

: Γ → R2. Then the following diagram commutes by
Proposition 20.9 in Van der Vaart [2000].

Γ

H R2

∂ψ̄(γ,α0,θ)
∂γ

∂γ(Fr)
∂r

∂E[ψ(W,γ(Fr),α0,θ)]
∂r

By Neymann orthogonality with respect to the distribution Fr, ∂E[ψ(W,γ(Fr),α0,θ)]
∂r

≡ 0.
∂ψ̄(γ,θ)
∂γ

is onto Γ which satisfies Chernozhukov et al. [2020] Theorem 3 condition iv).
Then, by linearity of the Hadamard derivative and the commutativity of the above
diagram it must be the case that ∂ψ̄(W,γ,α0,θ)

∂γ
≡ 0. That is, the Hadamard derivative is

the 0 function from Γ → R2. Note that this is the case because ∂γ(Fr)
∂r

is onto L2(X ).
According to the above calculations we have, for δH := ∂γ1,Fr

∂r
− ∂γ0,Fr

∂r

∣∣∣∣
r=0

∈ L2(X ).

Then as specified above: ∂E[ψ̄(θ,α0,γ)]
∂γ

(δH) is a linear map from L2(X) → R2 in δH . In
particular it maps to 0 ∈ R2 for any δH(X), so it’s the 0 map. Hence we verified
Neyman orthogonality with respect to γ directly.

4.8 Proof of Lemma 22

Proof. The proof follows from using Ik ⊥⊥ Ick, the computation of conditional variance
and Markov’s inequality. See Kennedy et al. [2020] for a detailed treatment.

4.9 Proof of Lemma 23

Proof. Endow the spaces Γ with the L2(X , µ) norm and R2 with the standard Eu-
clidean norm ∥·∥. We directly compute the directional derivative of ψ̄(θ, γ, α) with
respect to γ.

∂

∂r
ψ̄(γ, θ, α0)

=E
[[ exp

(
−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)

)
· (λ)2

exp
(

−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)
)

· (−λ) · (2 − λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1 − γ0) − τ̃))

]
×
(
D(Y − (1 − r)γ1,0(X) − rγ1(X))

πF0 (X)
−

(1 − D)(Y − (1 − r)γ0,0(X) − rγ0(X))
1 − πF0 (X)

)
[(γ1 − γ1,0) − (γ0 − γ0,0)]

]
where we emphasized linearity in [(γ1 − γ1,0) − (γ0 − γ0,0)], the discrepancy between
the estimated CATE and the true one. The second order Frechet derivative, if it
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exists, is a bi-linear operator given below, obtained by differentiating the first order
Frechet derivative with respect to r. Then:

∂

∂r

∂ψ̄(γ, θ, α0)
∂r

=E
[{[

exp(−λ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))(−λ)3

exp(−λ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))(−λ)2(3 − (1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))

]
×
(
D(Y − (1 − r)γ1,0(X) − rγ1(X))

πF0 (x)
−

(1 − D)(Y − (1 − r)γ0,0(X) − rγ0(X))
1 − πF0 (x)

)
×[(γ1 − γ1,0) − (γ0 − γ0,0); (γ1 − γ1,0) − (γ0 − γ0,0)]

+

[
exp
(

−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)
)

· (λ)2

exp
(

−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)
)

· (−λ) · (2 − λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1 − γ0) − τ̃))

]
×[(γ1 − γ1,0) − (γ0 − γ0,0)]

(
D

πF0 (X)
[γ1(X) − γ1,0(X)] −

1 − D

1 − πF0 (X)
[γ0(X) − γ0,0(X)]

)}]
Evaluated at r = 0 the second order directional derivatives are:

E
[ exp (−λ · ((γ1,0(X) − γ0,0(X)) − τ̃)) · (λ)2

exp (−λ · (γ1,0(X) − γ0,0(X)) − τ̃)) · (−λ) · (2 − λ · ((γ1,0(X) − γ0,0(X)) − τ̃))


× [(γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X)); (γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X))]

}]

by the law of iterated expectations. We emphasized that the above expression, is
bi-linear 3 in (γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X). If the bi-linear map is continu-
ous at (γ1,0, γ0,0) with respect to the operator norm then ψ̄ is Frechet differentiable
at (γ1,0, γ0,0) and the directional derivative and the Frechet derivative coincide. A
sufficient condition is given by the following.∥∥∥∥∥ ∂2

∂r2 ψ̄(γ, θ, α0)
∥∥∥∥∥
L2

< ∞

which translates to∥∥∥∥∥
 exp (−λ · ((γ1,0(X) − γ0,0(X)) − τ̃)) · (λ)2

exp (−λ · (γ1,0(X) − γ0,0(X)) − τ̃)) · (−λ) · (2 − λ · ((γ1,0(X) − γ0,0(X)) − τ̃))


× [(γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X)); (γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X))]

∥∥∥∥∥
L2

< ∞

3Denote the space of linear maps from Banach spaces X to Y as B(X,Y ). It is itself a Banach
space. Then one may identify B(L2(X )2, B(L2(X )2;R2)) with B(L2(X )2 × L2(X )2;R2). Then the
second order Frechet derivative is a bi-linear map from L2(X )2 × L2(X )2R2.
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Then Frechet differentiability follows from Holder’s inequality with p = q = 2. Under
a slightly stronger condition which holds uniformly over r ∈ [0, 1] one can obtain
stronger results. Then Theorem 3 ii) in Chernozhukov et al. [2020] can be applied
and we have:

ψ̄(γ, α0, θ0) ≤ C∥γ1(X) − γ1,0(X) − (γ0(X) − γ0,0(X))∥2
L2 ≤ C

∥∥∥∥∥
γ1(X) − γ1,0(X)
γ0(X) − γ0,0(X)

∥∥∥∥∥
2

L2,E

and E is the Euclidean norm on R2. More generally consider C(λ) defined below:

C(λ) :=
∥∥∥∥ sup
r∈(0,1)

{exp (−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))
exp (−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))


(λ)2 0

0 (−λ)(2 − λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1 − γ0) − τ̃))

}∥∥∥∥
E

For a general bound here the constant depends on C(λ). If Λ is compact then we
can afford a representation of the theorem which is uniform across values for λ0

which gives a much stronger version of the approximating function in λ and gets rid
of some terms. For C̄ = supλ∈Λ C(λ) then ψ(γ, θ, α0) ≤ C∥γ − γ0∥2

L2 and Frechet
differentiability in a neighborhood of λ0 follows in a straightforward way from the
continuity of C(λ) and the compactness of Λ.

Remark 5. Compactness of Λ would follow, for example, from Assumption 4 which
restricts λ to be finite. We note that a condition in the form of C̄ < ∞ is sufficient
and does not require compactness of Λ.

4.10 Proof of Lemma 24

Proof. First observe that at γ = γ0 and α = α0:

E
[
∂

∂θ
ψ(w, θ, γ, α)

]
= E

[
∂

∂θ
g(w, θ, γ, α)

]
+ E

[
∂

∂θ
ϕ(w, θ, γ, α)

]
= E

[
∂

∂θ
g(w, θ, γ)

]
+ 0

= E
[
∂

∂θ
g(w, θ, γ)

]

by the law of iterated expectations. (N.B: if α0 is the propensity score than this holds
in a neighborhood of the true F0). Now, to show the result we verify the conditions
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in Lemma 17 of Chernozhukov et al. [2020]. First notice that for ∂g(w,θ,γ)
∂θ

, each of the
functions:

θ 7→ −1; θ 7→ 0;

θ 7→ − exp(−λ(τ(x) − τ̃))(τ(x) − τ̃); θ 7→ − exp(−λ(τ(x) − τ̃))(τ(x) − τ̃))2

is continuously differentiable in θ at θ0. The top two are constants and the other two
derivatives are, respectively:

exp(−λ(τ(x) − τ̃))(τ(x) − τ̃)2

exp(−λ(τ(x) − τ̃))(τ(x) − τ̃))3

Hence if E[exp(−λ0(τ(x)−τ̃))(τ(x)−τ̃)2] < ∞ and E[exp(−λ0(τ(x)−τ̃))(τ(x)−τ̃)3] <
∞. Assumption 2 is a sufficient condition for locally bounded derivatives which
satisfies Assumption 4 ii) in Chernozhukov et al. [2020]. Assumption 4 iii), namely∫
(∂gj
∂θl

(w, θ, γ̂k) − ∂gj
∂θl

(w, θ, γ0))dF0(w) follows from the continuous mapping theorem
and continuity of the the maps above with respect to γ(·) = τ(·) in the ∥·∥L2 norm.

4.11 Proof of Lemma 25
Proof. The proof mirrors the blueprint of Theorem 15 in Chernozhukov et al. [2020].

We have:

g(Wi, θ0, γ̂−k) + ϕ(Wi, γ̂−k, θ̃−k, α̂−k) − ψ(Wi, γ0, θ0, α0)

= g(Wi, θ0, γ̂−k) − g(Wi, θ0, γ0)︸ ︷︷ ︸
R̂1i,−k

+ ϕ(Wi, θ0, γ̂−k, α0) − ϕ(Wi, θ0, γ0, α0)︸ ︷︷ ︸
R̂2i,−k

+ ϕ(Wi, θ̃−k, γ0, α̂−k) − ϕ(Wi, θ0, γ0, α0)︸ ︷︷ ︸
R̂3i,−k

+ ϕ(Wi, θ̃−k, γ̂−k, α̂−k) − ϕ(Wi, θ̃, γ0, α̂−k) + ϕ(Wi, γ̂−k, α0, θ0) − ϕ(Wi, γ0, α0, θ0)︸ ︷︷ ︸
∆̂i,−k

+ g(Wi, θ0, γ0) + ϕ(Wi, θ0, γ0, α0)

− ψ(Wi, θ0, γ0)

= R̂1i,−k + R̂i2,−k + R̂i3,−k + ∆̂i,−k
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Conditioning on the set not used in the nonparametric estimation we have:

E[R̂1i,−k + R̂2i,−k|Ick] =
∫

X
(g(w, θ0, γ̂−k, α0) + ϕ(w, θ0, γ̂−k, α0))dF0(w)

=
∫

X
ψ(w, θ0, γ̂−k, α0)dF0(w)

= ψ̄(θ0, γ̂−k, α0)

The third term’s expected value, conditional on the subsample is given by E[R̂i3,−k|Ik] =∫
X ϕ(Wi, θ̃−k, γ0, α̂−k)dF0(w) = 0. Finally consider the term:

1√
n

∑
i∈Ic

R̂1i,−k + R̂i2,−k + R̂i3,−k − E[R̂1,−k + R̂2,−k|Ick] + E[R̂1,−k + R̂2,−k|Ick]

Now by Kennedy et al. [2020] Lemma 2 we have:

1√
n

∑
i∈Ic

R̂1i,−k + R̂i2,−k − E[R̂1,−k + R̂2,−k|Ick] = OP (∥ψ(Wi, θ0, γ̂k, α0) − ψ(Wi, θ0, γ0, α0)∥2
L)

= OP (∥γ̂k − γ0∥2
L)

where the last equality follows from Lemma 23 ii). Again by Kennedy et al. [2020]
Lemma 2:

1√
n

∑
i∈Ik

R̂i3,−k − E[R̂i3,−k|Ik] = OP (∥ϕ(Wi, θ̃−k, γ0, α̂−k) − ϕ(Wi, θ0, γ0, α0)∥L2)

= OP (∥α̂− α0|2L) +OP (∥θ̃ − θ0∥R2)

since ϕ(·) is linear in α and differentiable in θ. Then Assumption 5 guarantees that
these last two terms are oP (1). Furthermore, by Lemma 23 ii) for n sufficiently large
we have:

E[R̂1,−k + R̂2,−k|Ik] ≤
√
nC∥γ̂k − γ0∥2

for C̄ given in proposition 23. A similar argument shows 1√
n

∑
i∈Ic

k
∆i,−k = oP (1). If

that’s the case, we conclude that:

1√
n

∑
i∈Ik

g(Wi, θ0, γ̂−k) + ϕ(Wi, θ̃k, γ̂k, α̂−k) = 1√
n

∑
i∈Ik

ψ(Wi, γ0, θ0, α̂0) + oP (1)
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4.12 Proof of Theorem 19

Proof. The proof can be found in Cover [1999] Theorem 11.4.1.

4.13 Proof of Theorem 20

Proof. The proof follows straightforwardly from Theorem 1 in Csiszár [1984] noting
that, by Assumption 4, condition (2.18) in Csiszár [1984] is satisfied. For finitely
supported X, an easier proof is given in Theorem 11.6.2 in Cover [1999].
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