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Abstract

This paper studies the robustness of estimated policy effects to changes in the
distribution of covariates. Robustness to covariate shifts is important, for exam-
ple, when evaluating the external validity of (quasi)-experimental results, which
are often used as a benchmark for evidence-based policy-making. I propose a
novel scalar robustness metric. This metric measures the magnitude of the small-
est covariate shift needed to invalidate a claim on the policy effect (for example,
ATE ≥ 0) supported by the (quasi)-experimental evidence. My metric links the
heterogeneity of policy effects and robustness in a flexible, nonparametric way and
does not require functional form assumptions. I cast the estimation of the robust-
ness metric as a de-biased GMM problem. This approach guarantees a parametric
convergence rate for the robustness metric while allowing for machine learning-
based estimators of policy effect heterogeneity (for example, lasso, random forest,
boosting, neural nets). I apply my procedure to the Oregon Health Insurance
experiment. I study the robustness of policy effects estimates of health-care uti-
lization and financial strain outcomes, relative to a shift in the distribution of
context-specific covariates. Such covariates are likely to differ across US states,
making quantification of robustness an important exercise for adoption of the in-
surance policy in states other than Oregon. I find that the effect on outpatient
visits is the most robust among the metrics of health-care utilization considered.
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1 Introduction
The guiding principle of evidence-based policy-making is to use experimental and

(quasi)-experimental studies to guide the adoption of policies in various settings. This
approach rests on the premise that the (quasi)-experimental findings are sufficiently
robust and generalizable to hold beyond the setting of the (quasi)-experiment. In prac-
tice, this premise does not always hold: there are several examples of policies that,
when adopted in non-experimental settings, under-performed their own experimental
estimates Deaton [2010], Cartwright and Hardie [2012], Williams [2020]. In this paper, I
argue that experimental estimates are insufficient to guide policy adoption and should be
complemented by a measure of robustness that accounts for how policy recipients differ
from the experimental ones. I develop a robustness metric, given by a scalar δ∗, that
quantifies how much the characteristics of the recipients would have to change in order to
invalidate the (quasi)-experimental findings. My metric summarizes the out-of-sample
uncertainty1 that the policy-maker faces regarding the policy recipients’ characteristics.
As such, my metric complements traditional summaries of in-sample uncertainty, like
the standard errors, which routinely accompany (quasi)-experimental estimates.

As a motivating example, consider a policy-maker who must decide whether to offer
medical insurance coverage to low-income households. The policy-maker has access
to the experimental estimates of Finkelstein et al. [2012] which suggest that a similar
intervention led to higher health-care utilization and reduced financial strain in Oregon.
The target population of insurance recipients could differ from the experimental one in
Oregon along important dimensions. Our goal is to quantify how robust the experimental
findings would be if relevant characteristics of the recipients are allowed to change. In this
paper, I provide a solution to this problem by leveraging the policy effect heterogeneity
in the experiment.

When policy effects are heterogeneous across sub-populations with different covariate
values, (quasi)-experimental findings are generally not robust to changes in the distri-
bution of the covariates. In such cases, even small changes in the distribution of the
covariates could lead to significant aggregate changes in the policy effects. For exam-
ple, in the Oregon experiment, subsidized health insurance could benefit sicker patients

1Quantifying other sources of out-of-sample uncertainty has been a central theme in the recent
econometric literature including Andrews et al. [2017] for moment conditions, Altonji et al. [2005],
Oster [2019], Cinelli and Hazlett [2020] for confounding factors, and the break-down approaches in
Horowitz and Manski [1995], Masten and Poirier [2020].
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more than healthier patients. Then, the proportion of recipients with a given pre-
existing health status, health habits, and/or co-morbidities may strongly influence the
overall effect of the policy. Usually, these types of covariates are exclusively collected in
the experimental context and not all of them are accessible in the new policy prior to
implementation. As a result, the procedures proposed by Hsu et al. [2020] and Hart-
man [2020] that re-weight sup-population effects by the new environment’s entire set
of covariates are generally not feasible. Moreover, the heterogeneity of policy effects
across sub-populations with different covariates values can be hard to model. This is
because while domain knowledge can help select covariates that are predictive of the
heterogeneity of policy effects, it usually cannot pin down a specific functional form
for this heterogeneity. Because this heterogeneity links covariate shifts to shifts in the
magnitudes of the aggregate policy effects, a general approach to robustness must reflect
the uncertainty regarding the heterogeneity’s functional form.

My robustness metric avoids the need to specify a functional form for the policy effect
heterogeneity, letting it instead be flexibly estimated through the (quasi)-experimental
data. Many popular existing approaches to robustness, like Altonji et al. [2005], Oster
[2019] and Cinelli and Hazlett [2020], take advantage of specific functional forms. When
designing a robustness metric for distributional changes, relying on functional form as-
sumptions carries important implications for what type of shifts the metric can detect.
If the way we measure a shift does not match the way we model heterogeneity, the
resulting measure of robustness may be misleading. Consider, for example, measuring
the difference between an arbitrary covariate distribution and the (quasi)-experimental
one by reporting the difference in their means. With an unrestricted form for the het-
erogeneity of policy effects, we can, in general, construct a mean-preserving shift of the
covariates’ distribution which invalidates the policy-maker’s claim. For example, in the
Oregon experiment, if higher income recipients have negative effects while lower-income
recipients have positive effects, we could construct a mean-preserving spread of the in-
come distribution that induces a negative effect overall. Since their means coincide, such
a distribution will have a distance of zero from the experimental covariates. A metric
that, in most cases, is equal to zero cannot be very informative for assessing the robust-
ness of (quasi)-experimental findings. This example suggests that a robustness metric
should be general enough to accommodate unknown forms of policy effect heterogeneity.
My robustness metric allows for arbitrary forms of policy effects heterogeneity, avoiding
the limitations of a parametric model. Despite its generality, my metric is still easy to
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construct and interpret: a one-number summary of heterogeneity which only depends
on (quasi)-experimental data.

Measuring robustness to covariate shifts requires choosing a distance between an
arbitrary distribution of the covariates and the (quasi)-experimental one. In my ap-
proach, I adopt Kullback-Leibler divergence distance (KL distance). The KL distance is
a popular choice for sensitivity analysis exercises, appearing recently in Christensen and
Connault [2019] who apply it to models defined by moment inequalities and Ho [2020]
who uses it in a Bayesian context. It has several advantages in our context. First, it
is invariant to smooth invertible transformations of the covariates, hence independent
of the covariates’ units. Second, it provides a closed-form expression for the proposed
global robustness measure, while other popular robustness approaches, like Broderick
et al. [2020] rely on local approximations. Leveraging the closed-form solution, I cast
estimation of my robustness metric as a GMM problem where the moment equation de-
pends on two components. The first is the observed covariate distribution. The second
is a functional parameter capturing the heterogeneity of policy effects, which can be
flexibly estimated in the (quasi)-experimental data.

The heterogeneity of policy effects is often sparse: out of the rich set of covariates
available in the (quasi)-experiment, just a few are needed to approximate it well. When
covariate data is even moderately high-dimensional, it can be hard to select which covari-
ates are important ex-ante. Machine-learning estimators, like lasso, random forest and
boosting, can exploit the sparsity to automatically select the key covariates, reducing
the need for ad-hoc procedures. Using machine-learning to estimate policy effect hetero-
geneity is appealing, but it may result in substantial bias in the estimated robustness
metric δ∗, due to regularization and/or model selection. To accommodate machine-
learning methods, I construct a de-biased GMM estimator: I derive the nonparametric
influence function correction for the GMM parameters and leverage the theory in Cher-
nozhukov et al. [2020] to eliminate the first-order bias from first-step estimators. I show
that my metric δ∗ can be consistently estimated at

√
n-rate under mild conditions on

the first-step estimators of the policy effect heterogeneity. Under these conditions the
functional parameter that summarizes heterogeneity can be estimated through modern
high-dimensional methods like lasso, random forest, boosting and neural nets.

I apply my robustness procedure to study the Oregon health insurance experiment,
whose findings have profound implications for public health Sanger-Katz [2014]. I repli-
cate results in Finkelstein et al. [2012] and compute the robustness measure for several
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outcomes capturing recipients’ heath-care utilization and financial strain. As discussed
in Finkelstein et al. [2012] and Finkelstein [2013], the Oregon lottery recipients are older,
in worse health, and feature a higher proportion of white individuals compared to the
national average. These features invite questions about the robustness of the Oregon
experiment’s findings and the possibility of using them for policy adoption in other
states. The differences in magnitude and sign between the effects of Medicaid expan-
sion in Oregon and Massachusetts have motivated an effort to reconcile the discrepancy
by identifying different populations of beneficiaries in the two states Kowalski [2018].
My robustness exercise is complementary to Kowalski [2018]: I compute the smallest
change in the distribution of the key covariates relative to the Oregon benchmark, that
can eliminate the positive effect of the lottery on recipients’ health-care utilization and
financial strain outcome measures. I find that the increase in outpatients visits is the
most robust outcome among the measures of health-care utilization and financial strain.

This paper is also related to a larger strand of the econometric and statistics litera-
ture on robustness and sensitivity analysis originally initiated by Tukey [1960] and Huber
[1965]. Recently, there are many other important but distinct robustness approaches:
geared towards external validity Meager [2019], Gechter [2015], robustness to dropping
a percentage of the sample Broderick et al. [2020], by looking at sub-populations Jeong
and Namkoong [2020], or with respect to unobservable distributions like in Christensen
and Connault [2019], Armstrong and Kolesár [2021], Bonhomme and Weidner [2018],
and Antoine and Dovonon [2020]. My contribution complements this tool-set by giving
the policy-maker an explicit measure of robustness to shifts in the covariate distribu-
tions. There are two reasons to focus on observable characteristics. First, observable
characteristics are readily available to the policy-maker and are likely to be of first-level
importance when assessing the robustness of (quasi)-experimental findings. Second, the
resulting robustness metric is identified through the (quasi)-experimental data, limiting
the need for bounding or partial identification approaches.

The paper is organized as follows: Section 2 introduces the basic setting and the
notion of robustness to changes in the covariate distribution. Section 3 presents the
main estimator and its asymptotic properties using the de-biased GMM theory recently
developed in Chernozhukov et al. [2020]. Section 4 applies the proposed robustness
metric to the Oregon health insurance experiment and reports empirical findings. Section
5 briefly concludes. In the Appendix, I provide all the proofs and discuss multiple
extensions.
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2 A robustness metric for covariate shifts

In this section, I use the potential outcome framework to explicitly link the hetero-
geneity of policy effects to the notion of robustness outlined in the introduction. The
discussion focuses on the average treatment effect (ATE) as the main aggregate pol-
icy effect of interest. The policy-maker wants to assess the robustness of a claim on
the magnitude (and/or sign) of the ATE, of the form ATE ≥ τ̃ . The claim is true
in the (quasi)-experiment but may no longer be true if covariates changes too much.
The idea is to take advantage of the Conditional Average Treatment Effect (CATE), a
functional parameter which links sub-population level treatment effects with the ATE.
I use CATE to characterize, among the distributions that invalidate the policy-maker’s
claim (ATE ≥ τ), the one that is closest to the distribution of covariates in the (quasi)-
experiment. I label this distribution the least favorable distribution because, among the
distributions that invalidate the policy-maker’s claim it is the hardest to distinguish
from the covariates in the (quasi)-experiment. To measure the distance between two
covariate distributions I use the Kullback-Leibler divergence distance. The value of the
KL distance between the least favorable distribution and the (quasi)-experimental co-
variates will be the proposed robustness metric δ∗. Any covariate distribution that is
closer than δ∗ from the (quasi)-experimental covariates will be guaranteed to satisfy the
policy-maker’s claim (ATE ≥ τ̃).

2.1 Notation and Set Up

The policy-maker observes an outcome of interest Y ∈ Y , a set of covariate measure-
ments X ∈ X and a treatment status D ∈ {0, 1}. I consider two sets of covariates. The
first set includes covariates which are exclusively collected in the (quasi)-experimental
data and for which no counterpart exists in census data. For example, in the Oregon
health insurance experiment, the recipients’ health status and previous health history is
available through survey data but such information may not be accessible through census
variables in other settings (perhaps other states). The second set includes covariates for
which a counterpart exists in the census data in other states, for example participants’
race and age. To reflect the division of these two covariate types, X could be partitioned
into two sets: X = Xc ∪ Xe denoting census covariates and (quasi)-experiment specific
covariates respectively. All variables in X will be used to estimate the treatment ef-
fect heterogeneity in the (quasi)-experiment, which is the functional parameter needed
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to compute the robustness metric. The details are introduced in Section 2.3. If the
policy-maker had access to observations on Xc in both the (quasi)-experiment and in
the setting where the policy is to be adopted, my robustness metric can be modified
to account for this additional information. To lighten the notation, in the main text I
consider X = Xe and discuss how to include Xc in the Appendix.

Now I introduce the notation to discuss changes in the distribution of the covariates.
I use FX to denote the distribution of the covariates in the (quasi)-experiment and and
PX to denote its associated probability measure. The propensity score is defined as
π(x) = PX(D = 1|X = x). Following the traditional potential outcome framework, I
denote Yd for d = {0, 1}, the potential outcomes under treated and control status when
the distribution of the covariates follows FX . For example, in the Oregon experiment,
Y1 may represent the financial strain of a recipient if they receive insurance coverage
while Y0 represents the financial strain of the same recipient if they do not receive
insurance coverage. In principle the distribution of the potential outcomes depends on
the distribution of the covariates. To reflect this, I use Yd and Y ′

d to denote the potential
outcomes when the distribution of the covariates follows FX and F ′

X respectively. Finally,
for any random variable W , W denotes its support.

The parameter of interest for the policy-maker is the ATE := E[Y1 − Y0]. The
Conditional Average Treatment Effect (CATE) defined by τ(x) := CATE(x) = E[Y1 −
Y0|X = x] captures how the average treatment effect changes across sub-populations
with covariate value X = x. Under unconfounded-ness (Assumption 1 i) below), τ(x)
is nonparametrically identified2 by E[Y |D = 1, X = x] − E[Y |D = 0, X = x] in the
(quasi)-experiment Imbens and Rubin [2015].

Assumption 1. Unconfounded-ness & Overlap

i) Y1, Y0 ⊥⊥ D|X.
ii) For all x ∈ X we have 0 < ϵ ≤ π(x) ≤ 1 − ϵ < 1

In the case of a randomized control trial, for example when treatment assignment
is completely randomized or is randomized conditional on covariates, Assumption 1

2If the CATE only partially identified, like in the case on non-compliance based on unobservables,
it is possible to follow a bounding approach for my robustness procedure. I leave this interesting case
for future research.
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holds by design. In the case of (quasi)-experimental studies Assumption 1 i) requires
the researcher to carefully evaluate the selection mechanism that governs program par-
ticipation. Assumption 1 ii) is strict overlap. While strict overlap is not a necessary
condition for identification, it will be important in the estimation of the robustness
metric in Section 3.

In this paper, the goal is to study the robustness of claims concerning the ATE with
respect to changes in the distribution of the covariates. Because the ATE is obtained
by averaging τ(x) with weights proportional to FX we have the following map between
the covariate distributions and the ATE:

ATE : FX 7→
∫

X
τFX (x)dFX(x) (1)

The subscript FX on τ(x) indicates that, in general, it’s possible that the functional form
of CATE depends on FX . In this case, a change in the distribution of the covariates
would effect the magnitude of ATE through two channels: a direct effect thorough the
weights of FX and an indirect effect through changing the functional form of τFX (x). In
this paper, I introduce the covariate shift assumption3 to eliminate the indirect effect.

Assumption 2. (Covariate Shift) Let X ′ denote the covariates in the new environ-
ment. Then:

i FY ′
d

|X′(y|x) = FYd|X(y|x) for d = {0, 1}, for all x ∈ X and y ∈ Yd and all distribu-
tions of X ′.

ii X ′ ⊆ X

Assumption 2 i) says that the causal link between the treatment variable D and the
potential outcomes of interest Y1 and Y0 does not depend on the distribution of the ob-
servables. One could think of Assumption 2 as analogous to a policy invariance condition
where the invariance in this case is with respect to the distribution of covariates.

Assumption 2 ii) says the support of the covariates in the new environments is con-
tained in the support of the baseline environment. In practice, this limits the extrapola-
tion to environments for which any value of the covariates could have been observed in
the (quasi)-experimental setting as well. Because Assumption 2 guarantees that τFX (x),

3This assumption appears, for example also in Hsu et al. [2020] and Jeong and Namkoong [2020].
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the CATE, does not vary when FX is replaced by any other distribution FX′ it is not
necessary to index τ(x) with FX .4 Then, the link between FX and ATE reduces to
integration against a fixed τ(x):

ATE : FX 7→
∫

X
τ(x)dFX(x) (2)

To emphasize the dependence of the ATE on an arbitrary distribution of the covariates
FX , I occasionally write ATE(FX). Before presenting the general framework I give
perhaps the simplest nontrivial example of a robustness exercise with respect to the
distribution of the covariates.

Example 1. Consider a binary covariate X = {0, 1}. D is randomly assigned, trivially
satisfying Assumption 1. By unconfounded-ness, E[Y1|x = 0],E[Y0|x = 0],E[Y1|x =
1],E[Y0|x = 1] can all be identified. Consequently, the average treatment effect for the
sub-populations x = 0 and x = 1, denoted τ(0) and τ(1) are also identified. Because
X is Bernoulli, any distribution on {0, 1} is fully described by PX(x = 1) = p1 so
automatically PX(x = 0) = 1 − p1. Suppose that, in the experiment ATE ≥ 0. Note
that:

ATE(FX) = E[Y1|x = 0] · (1 − p1) + E[Y1|x = 1] · p1

− E[Y0|x = 0] · (1 − p1) − E[Y0|x = 1] · p1

= (E[Y1|x = 0] − E[Y0|x = 0]) · (1 − p1) + (E[Y1|x = 1] − E[Y0|x = 1]) · p1

= τ(0) · (1 − p1) + τ(1) · p1.

A shift in the covariate distribution is simply a shift in the parameter p1. Assume the
treatment effects are sufficiently heterogeneous, namely τ(1) > 0 > τ(0) so one group
has positive effects from treatment and the other group has negative effects. What is the
closest covariate distribution that invalidates the claim ATE ≥ 0?

It suffices to find the weights on x = 0, x = 1 such that the ATE is 0. Expressing it
in terms of p1:

τ(0) · (1 − p∗
1) + τ(1) · p∗

1 = 0
4This could be cast as an identification result which follows immediately from the Assumption 2.

See Hsu et al. [2020], Lemma 2.1.
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A solution is given by:

p∗
1 = −τ(0)

τ(1) − τ(0) ∈ [0, 1]

so the distance |p∗
1 − p1| = | −τ(0)

τ(1)−τ(0) − p1| is largest shift in the covariates that still
guarantees that the claim ATE ≥ 0 holds.

Under what conditions we are always guaranteed to find a solution like p∗
1 above? Is

it unique? Can we always characterize the distance between p∗
1 and p1? If the space X is

not discrete, a probability distribution on X cannot be described by a finite dimensional
parameter without restricting the class of probability distributions on X . How should
one measure the distance between two distributions in general?

I start from this last question by introducing a notion of distance that does not
require any parametric restriction on probability distributions.5 Here I introduce the
KL-divergence distance:

Definition 2 (KL-divergence). Consider the KL-divergence between two distributions
FX and F ′

X given by:

DKL(F ′
X ||FX) :=

∫
X

log
(
dF ′

X

dFX
(x)
)
dF ′

X

dFX
(x)dFX(x) (3)

where dF ′
X

dFX
is the Radon-Nikodym derivative of the distribution F ′

X with respect to the
experimental distribution FX , provided that P ′

X ≪ PX for the respective probability mea-
sures.

There are several advantages to using the KL divergence to measure the distance
between probability distributions: it is nonparametric, it has useful invariance prop-
erties and it delivers a closed form solution for the policy-maker’s robustness problem
introduced below. Both Ho [2020] and Christensen and Connault [2019] use the KL
divergence to measure the distance between probability distributions in different con-
texts. Appendix H discusses in detail how to use convex analysis to obtain a closed form
solution for the policy-maker’s robustness problem.

5I discuss the details of parametric classes in Appendix B, as special cases of the general procedure.

11



2.2 The policy-maker’s problem: quantifying robustness

After isolating the link between the ATE and the distribution of covariates and
choosing a distance measure between probability distributions, we can formalize the
policy-maker’s robustness problem. Consider the claim given by ATE ≥ τ̃ : the ATE is
larger than a desired threshold τ̃ . The sign of the inequality is without loss of generality,
as claims of the type ATE ≤ τ̃ can be accommodated with an equivalent treatment.
The threshold τ̃ captures a minimal desirable aggregate effect that would make the
intervention viable for the policy-maker. It could capture the average cost for the roll-
out of the intervention or the value of ATE for a competing policy. In Example 1, τ̃
was fixed at 0. The policy-maker is interested in the smallest shift from the (quasi)-
experimental distribution, FX , such that the claim ATE ≥ τ̃ is invalidated. Recall
τ(x) = CATE(x). Formally the policy-maker wants to solve the following problem:

inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX) (4)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃ (5)

The optimization problem in Equation (4) searches across all distributions of the co-
variates that invalidate the policy-maker’s claim ATE ≥ τ̃ (notice that the ATE for all
the distributions in Equation (5) is constrained to be less than τ̃) and selects, if they
exist, the one(s) that are closest to the (quasi)-experimental distribution FX , according
to the KL distance in Equation (4). Notice also that τ(x) in Equation (5) is not indexed
by F ′

X because of the covariate shift assumption (Assumption 2). Here, the class of
probability measures for the covariates is restricted to be absolutely continuous w.r.t
the (quasi)-experimental measure dFX6 but no other restriction is imposed: the class of
distributions is still nonparametric. Absolute continuity does restrict the distributions
F ′
X to be supported on X . While it may appear as an unnecessary restriction, I view

it as a very reasonable requirement: the feasible distributions in Equation (5) cannot
put mass on a sub-population X = x that could not theoretically be observed in the
(quasi)-experimental setting. Clearly, treatment effect values for sub-populations with
X = x that can never be observed can lead to arbitrarily large average effects and the

6This is a refinement of Assumption 1. Namely, with a slight abuse of notation, requiring for
instance that dFX , dF

′
X ≪ λ will deliver absolute continuity of dF ′

X w.r.t dFX . Restricting the support
guarantees that dF ′

X cannot put mass on areas where dFX does not put mass.
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robustness exercise would not be very informative. We are now ready to define the least
favorable distribution and the robustness metric.

Definition 3. i) The least favorable distribution set {F ∗
X} is given by the expression

below:

{F ∗
X} = arg min

P ′
X : P ′

X≪PX ;P ′
X(X )=1

DKL(F ′
X ||FX) (6)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃

where the set in Equation (6) is allowed to be the empty set.
ii) For a given τ̃ ∈ R the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) = DKL(F ∗
X ||FX). (7)

The minimizer of Equation (4) is the least favorable distribution, the closest dis-
tribution of the covariates that invalidates the target claim. I define the KL-distance
between the experimental distribution and the least favorable distribution as my metric
δ∗(τ̃) which quantifies the robustness of the claim ATE ≥ τ̃ . Observe that, if the (quasi)-
experimental ATE satisfies the constraint in Equation (5), then we can always choose
the least favorable distribution to be the (quasi)-experimental one, namely F ∗

X = FX

since it’s feasible and DKL(F ∗
X ||FX) = 0. In words this means that the policy-maker’s

claim is already invalidated in the (quasi)-experiment. The problem is non-trivial when
the ATE(FX) > τ̃ condition is satisfied for the (quasi)-experimental distribution FX . In
such a case, the (quasi)-experimental distribution FX is excluded from the feasible set
of Equation (5). As a result, the value of DKL(F ∗

X ||FX) in Equation (4) must be strictly
positive. Notice that, in Example 1, we imposed the requirement that the ATE(p1) in
the experiment was larger than 0, to guarantee that the problem was indeed non-trivial.

If X is a set containing finitely many elements, the covariate distribution is discrete.
In practice, there are many empirical applications in which covariates of interest are
either discrete or have been discretized for privacy reasons. Any grouping of a continuous
variables in finitely many classes, gives rise to discrete distribution. For example, in
the Oregon experiment, the recipients income may have been discretized into income
groups. When the covariates space is discrete, we can get an important geometric
insight in the structure of the robustness problem as formulated by Equations (4) and
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(5). The example below illustrates the case where X contains only 3 points. In this
case, a probability distribution on X can be parametrized by 2 parameters and there is
convenient visual representation of the robustness problem contained in Equations (4)
and (5).

Example 4. Consider the case X = {x1, x2, x3} each value representing an income bin:
high, medium and low respectively. Here the experimental distribution is represented by
a triplet (p1, p2, p3). Because p1 + p2 + p3 = 1 the whole space of probability distributions
on X is 2-dimensional: it suffices to choose p1 and p2 to fully characterize a distribution.
Suppose that conditional treatment effects are highest for lower income participants and
are lowest for high income participants: τ(x1) = 1, τ(x2) = 2, τ(x3) = 3. The average
cost of roll-out is equal to τ̃ = 1.8. The claim is ATE ≥ τ̃ meaning that the ATE should
be higher than average cost. In the experiment ATE is equal to 2.4 > 1.8 which satisfies
the claim.

The policy-maker’s robustness problem in Example 4 is depicted in Figure 1. Since
the functions in Equations (4) and (5) are differentiable in p1 and p2 the finite dimensional
problem could be easily solved through the standard Karush-Kuhn-Tucker conditions.
The level sets of the KL distance, the feasible set and the least favorable distribution are
all indicated in Figure 1. The KL level set associated to δ∗(τ̃) is highlighted by a green
contour. It includes the set of covariate distributions that are guaranteed to satisfy the
policy-maker’s claim. This region is conservative, in the sense that there exist covariate
distributions that satisfy the policy-maker’s claim but fall outside of the green contour.
This feature reflects the definition of robustness as a minimization problem in Equations
(4) and (5).

When X is not discrete, a representation like Figure 1 may not be possible. Nonethe-
less one can still show that, given some conditions, a solution for F ∗

X like the one in Figure
1 always exists, is unique, and can be characterized by a closed form expression, with
virtually little difference from the finite dimensional case. This result also guarantees
that the robustness metric δ∗(τ̃) is well defined for a wide range of τ̃ values.

2.3 A closed form solution for quantifying robustness

In this section I characterizes the solution for the policy-maker’s robustness problem
in Equations (4) and (5) in the general case. Some additional conditions are introduced
below.
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Figure 1: The triangle represents the collection of all arbitrary probability distri-
bution triplets (p1, p2, p3) on the discrete set (x1, x2, x3) represented in barycentric
coordinates. P denotes the experimental distribution, given by (0.2, 0.2, 0.6). The
CATE(x1, x2, x3) = (1, 2, 3) so the conditional treatment effect is greater in the highest
income group. The yellow shaded region is the feasible set: the collection of covariate
distributions with an ATE ≤ 1.8, which invalidate the policy-maker’s claim. The solid
yellow line is the boundary of the feasible set. The contour lines from blue to red repre-
sent the level sets of the KL distance of any distribution in the triangle with respect to
the experimental distribution P (bluer indicates a lower value for the KL divergence).
The distribution P ∗ = (0.491, 0.218, 0.291) is the least favorable distribution. It is the
minimizer of the KL divergence, subject to the feasibility constraint (it lies on the or-
ange line). The green boundary is the level set of KL that corresponds to δ∗ ≈ 0.296.
Any distribution closer than δ∗, within the green boundary is guaranteed to satisfy the
policy-maker’s claim.
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Assumption 3 (Bounded-ness). The conditional average treatment effect τ(X) is bounded
PX-almost surely over X . In particular for some M ∈ R+ we have:

PX (|τ(X)| ≤ M) = 1

Incidentally, for any covariate probability measure that is absolutely continuous w.r.t
PX , Assumptions 3 continues to hold. This is because PX′ cannot put mass on the
subsets of X that PX considers negligible, which includes the subset of X where τ(x) is
unbounded. Assumption 3 is automatically satisfied if τ(X) is bounded on X . Bounded-
ness is not very restrictive in a micro-econometrics framework where virtually all vari-
ables are bounded in the cross-section.

Consider the feasible set in Equation (5). While the set is guaranteed to be convex,
it may be empty. If that is the case, the value of the minimization problem in Equation
(4) is +∞. I avoid such cases by guaranteeing that, for a given claim, an ATE = τ̃ is
attainable, for some distribution F ′

X . This amounts to assuming that there is enough
variation in τ(x) to induce an ATE of τ̃ through changes in the distribution of the
covariates. An extreme case where such requirement fails is described below.

Example 5 (Homogeneous treatment effects). Consider a situation of constant treat-
ment effects. In this case ATE(FX) =

∫
X c dFX = c so that the ATE is equal to c

regardless of the distribution of the covariates.

Not surprisingly, no heterogeneity in treatment effects translates in no threat to
robustness. One can freely extrapolate the claim from the (quasi)-experimental environ-
ment to any other environment. Constant treatment effects are a rather extreme case.
A more realistic example concerns whether the minimal desired magnitude τ̃ is outside
of the range of variation of the heterogenous treatment effects. For example, suppose
that 2 ≤ τ(x) ≤ 5 with probability equal to 1. Then, choosing τ̃ = 1 results in an empty
feasible set of distributions, since no probability distribution may ever integrate against
τ(x) to an ATE of 1. In this case, since the set of distributions in Equation (5) is empty,
the infimum in Equation (4) evaluates to +∞. So we see that enough heterogeneity of
treatment effects is a necessary condition for robustness to be non-trivial. For estimation
purposes it is convenient to consider a parameter space for the robustness measure that
is a subset of R rather than R ∪ {+∞}. The following assumption guarantees that the
feasible set is not empty:

16



Assumption 4. (Non-emptiness) Denote the interior So of a set S to be the union of
all open sets O ⊆ S. Let L : FX →

∫
X τ(x)dFX(x) be the linear map defined on the

set of probability distributions on X that are absolutely continuous w.r.t PX , denoted as
PX ⊂ M. We require τ̃ ∈ Lo(PX), that τ̃ is in the interior of the range of L.

Assumption 4 says that τ̃ is in the interior of the range of the linear map L. In other
words, there is enough observable heterogeneity in treatment effects that there exists a
distribution of covariates that, when integrated against τ(x), it induces an ATE = τ̃ .
Contrast this to the homogeneous treatment effect case in Example 5, where Assumption
3 fails. There, Lo(PX) = ∅. More generally, the length of L(PX) measures how rich
is the set of ATEs that could be produced by choosing an arbitrary distribution FX .
Assumption 4 is testable. For a given value for τ̃ , one could obtain an estimate of the
τ(x) and test whether τ̃ is smaller than supx τ(x) or greater than infx τ(x), depending
on the sign of the claim of interest, using the procedure in Chernozhukov et al. [2013].
Testing Assumption 4 tests for whether treatment effects are sufficiently heterogeneous
to invalidate the claim of interest through a covariate shift, which is more general than
testing whether any form of treatment effect heterogeneity is present. This is because,
along the lines of the discussion above, treatment effects can indeed be heterogeneous
but not heterogeneous enough to invalidate the policy-maker’s claim. A rejection in
the test means implies an infinite value for the robustness metric and signals that the
policy-maker’s claim can never be invalidated by covariates shifts.

Remark 6. The interior condition cannot be relaxed. By Assumption 3, the image of
PX under L is a compact convex subset of R, that is, an interval. If τ̃ is at a an endpoint
of this interval, the feasible set in Equation (5) may consist of only a point mass measure
Because such a covariate measure is not absolutely continuous w.r.t. PX , the feasible set
is again empty and will necessarily result in an infinite value for the KL-divergence in
Equation (4).

In Example 1 we imposed the condition ATE(1) = τ(0) < 0 to guarantee that the
problem has a solution. In the context of Example 1, L(PX) = [τ(0), τ(1)], the image
of L is the interval between the conditional average treatment effects at x = 0 and
x = 1 since any ATE(p) is a weighted average of τ(0) and τ(1). By requiring that
τ(0) < 0 < τ(1) , τ̃ = 0 ∈ Lo(PX) hence satisfies Assumption 4.
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With Assumptions 3 and 4 we are now ready to introduce the key result that always
delivers a closed form solution for the robustness metric. It says that the least favorable
distribution set in Definition 3 is nonempty and it contains a unique distribution (PX-
almost everywhere). Moreover the robustness metric δ∗(τ̃) is finite and both it and the
least favorable distribution have a closed form solution:

Lemma 7 (Closed form solution). Let Assumptions 1, 2, 3 and 4 hold. Then: i)
The infimum in Equation (4) is achieved. Moreover F ∗

X , is characterized, PX-almost
everywhere, by:

dF ∗
X

dFX
(x) = exp(−λ(τ(x) − τ̃))∫

X exp(−λ(τ(x) − τ̃))dFX(x) (8)

where dF ∗
X

dFX
is the Radon-Nikodym derivative of dF ∗

X with respect to dFX and λ is the
Lagrange multiplier implicitly defined by the equation:

∫
X

exp(−λ(τ(x) − τ̃))(τ(x) − τ̃)dFX(x) = 0 (9)

ii) The value of the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) = DKL(F ∗
X ||FX) = − log

(∫
X

exp(−λ(τ(x) − τ̃))dFX(x)
)

(10)

Proof. See Appendix I.

Lemma 7 greatly simplifies the computation of the robustness metric by essentially
showing that the fully general robustness problem that searches over the nonparametric
space of probability distribution is no-harder than the parametric cases in Examples 1
and 4. We can compare the closed form solution of Lemma 7 with the KKT solution
one could derive for Example 1 and verify that the two solutions are indeed identical.

Example 8. Return to the example of the discrete variable so X = {0, 1}. First notice
that the dominating measure here is the counting measure on {0, 1}. We are therefore
interested in simply the ratio p1

p∗
1

since it completely characterizes p∗
1. Because the problem

is one dimensional, the unique minimizer is the one that satisfies the constraint:

τ(1) · p∗
1 + τ(0) · (1 − p∗

1) = τ̃ =⇒ p∗
1 = τ̃ − τ(0)

τ(1) − τ(0) (11)

18



Recall that in Example 1 τ̃ = 0. On the other hand, from the solution provided by 7 we
have:

p∗
1
p1

= exp(−λ(τ(1) − τ̃))
exp(−λ(τ(1) − τ̃)) · p1 + exp(−λ(τ(0) − τ̃)) · (1 − p1)

(12)

where λ is implicitly defined as in Equation (7).

Fact 9. Equations 12 and 11 are equivalent.

Proof. See Appendix I.

Lemma 7 completely characterizes the robustness metric in terms of the (quasi)-
experimental distribution FX(x) and the CATE, τ(x). This is important because both
of them are nonparametrically identified from the (quasi)-experimental data. Hence,
to give an answer to the policy-makers robustness problem, it is enough to estimate
the treatment effect heterogeneity in τ(x). This result will deliver a very convenient
estimation theory which I discuss in Section 3.

2.4 Locally infeasible problem

We have seen how the restriction in Assumption 4 is key to guarantee that a solution
to Equation (4) exists and that the associated δ(τ̃) is finite. There is a partial extension
to Lemma 7 with respect to a local violation of Assumption 4. Consider a sequence of
τ̃m converging to a boundary point τ̃b of the range of τ(X). An example is depicted in
Figure 2. Suppose the policy-maker’s claim is given by: ATE ≤ τ̃m.

For each τ̃m within the range of variation of τ(X), the policy-maker’s problem has
a solution, F ∗

X,m given by Lemma 7. This is because there is a sub-population with
covariates x such that τ(x) ≥ τ̃m. The least favorable distribution will increase the
weight on this sub-population. If τ̃ is on the boundary, for example τ̃ = 3 in Figure
2, the only sub-population that has τ(x) ≥ τ̃b is x = 0.6, concentrated on a singleton.
But distributions that put unit mass on singletons are not feasible in the policy-maker’s
problem. For τ̃ = τ̃b, the feasible set is empty so there is no solution. If one looks at
the sequence of least favorable distributions, F ∗

X,m, associated to the sequence τ̃m → τ̃b,
is there a limiting distribution to which the sequence F ∗

X,m converges in some sense?
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Figure 2: Local to boundary conditions. The lower panel displays the conditional average
treatment effect, τ(x) for a univariate variable X. The experimental distribution is
in blue: the uniform distribution. The gray segment on the left labelled L(PX) is
the image of the collection of probability distributions supported on X under the map
L : FX 7→

∫
X τ(x)dFX(x). For every point in the interior, Lemma 7 holds and, for each

τ̃m, there is an associated least favorable distribution F ∗
X,m displayed in the upper panel.

As the sequence of τ̃m approaches the boundary of L(PX), the distributions concentrate
around x = arg max τ(x) = 0.6.

Under some additional assumptions, one can show a type of concentration result
for the sequence of solutions obtained by applying the closed-from solution formula in
Lemma 7. If τ(x) is a single peaked function, that is, it achieves its maximum (or
minimum) at a single point, we obtain convergence in distribution of the sequence F ∗

X,m

to the Dirac distribution at the single peak, δxb .

Proposition 10 (Local to boundary τ̃). Let Assumptions 1-3 hold and let τ̃m → τ̃b ∈
∂L(PX). Assume that the pre-image τ−1(τ̃b) = Xb = {xb} ∈ X o is a singleton. Further,
let X be compactly supported, with density f(x) < M on X . Then the sequence of least
favorable distributions for the policy-maker’s problem with parameter τ̃m, denoted F ∗

X,m,
converges weakly to δxb, the Dirac delta distribution with point mass at xb, that is:

lim
m→∞

∫
X
g(x)dF ∗

X,m(x) →
∫

X
g(x)δxb := g(xb)
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for g ∈ Cb(X ), the space of all continuous, bounded functions on X .

Proof. See Appendix I.

The point-mass distribution δxb is not a solution to the policy-maker’s problem with
parameter τ̃b because the feasible set never includes point mass distributions unless X
is discrete. In this sense, Proposition 10 delivers the limit of the sequence of solutions
in the sense of weak convergence. This is a weaker that the notion of convergence
induced by DKL. In particular when dFX ≪ λLeb (the Lebesgue measure on Rk),
DKL(dF ∗

X,m||δxb) = +∞ so the sequence of solutions F ∗
X,m does not converge to δxb in

DKL.7

2.5 Interpreting robustness

In this section I offer some practical guidance on how to interpret the the robustness
metric proposed in Definition 18. The first interpretation links the robustness metric
to a bound on the probability of drawing a sample of size n for which the experimental
conclusion is false. The second interpretation is a bench-marking exercise using available
census covariates.

2.5.1 A probability interpretation using Sanov’s theorem

One way to link the magnitude of the robustness metric δ∗(τ) to an easily interpretable
probability bound is through Sanov’s theorem. In this section I provide the intuition
through a finite dimensional example and give the interpretation. I discuss more details
on the foundations of Sanov’s theorem in Appendices F. First, consider the setting of
Example 4. Now suppose we collect a sample containing n i.i.d observations. Consider
a generic sequence of the data of size n, x = (x1, x2, · · · , xn). Each sequence is an
ordered list of values (High,Medium,Low). Define the type Px of a sequence x as the
proportion (relative to n) of realizations of a in x. This is Px(a) = N(a|x)

n
where N(a|x)

7In fact, Posner [1975] showed that DKL is lower-semicontinuous, that is, if Pn → P weakly, then
limn→∞ DKL(Pn||Q) ≥ DKL(P ||Q). In this case we have +∞ > 0
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is the number of times realization a shows up is in sequence x. We denote the collection
of types as Pn.8

For the present example, a result by Cover [1999] shows that while the number of
sequences is of the order of 3n, the number of types is bounded above by |Pn| ≤ (n+1)3.
We can look at the types that fall within a specific subset E of probability distributions.
For example we can look at all the types that invalidate the experimental conclusion on
the ATE. In this case E := {Q ∈ PX :

∫
X τ(x)dQ ≤ τ̃}, the constraint in Equation 5.

Notice that whether a sequence x ∈ E or not depends only on its type Px. Now, what is
the probability that, drawing a sequence x according to PX , such a sequence invalidates
the experimental results, that is x ∈ E?. It turns out that Sanov’s theorem provides a
link between this probability and the metric of robustness δ∗(τ).

Theorem 11. (Sanov’s theorem) Let X1, · · ·Xn be i.i.d distributed according to FX . Let
E be a convex set of probability distributions. Letting P n

X be the product measure of n
copies of PX . Then

P n
X(E ∩ Pn) ≤ e−nDKL(P ∗

X ||PX)

where

P ∗ = min
Q∈E

DKL(Q||P )

Moreover, if the set E is the closure of its interior then

lim
n→∞

1
n

log(P n(E)) → −DKL(P ∗|P )

Proof. The proof can be found in Cover [1999] Theorem 11.4.1.

Note that E := {Q :
∫

X τ(x)dQ ≤ τ̃} is obtained through imposing a linear restriction
on Q and therefore E is convex. Sanov’s theorem remains true for larger classes of
probability distributions, not necessarily confined to finitely supported X variables like
discussed in Csiszár [1984]. Note that δ∗(τ̃) = DKL(P ∗||P ) is precisely the metric of

8One can think of a type Px as keeping track of the proportion but forgetting the order. So
for example the two sequences of size n = 3 given by x = (High,Medium,Medium) and x′ =
(Medium,High,Medium) are distinct: x ̸= x′. But they have the same type: Px′ = Px.
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robustness δ∗(τ). It captures the smallest distance from the experimental distribution of
the covariates that will fail to satisfy the conclusion, hence a bound for the probability
that a sequence does not satisfy the policy-maker’s conclusion is given by

P n
X(E) ≤ e−nδ∗(τ̃)

The fact that the probability bound depends on τ̃ should not be surprising since τ̃ also
controls the inequality that defines the constraint set E. Notably the bound is non-
asymptotic in that it applies for any n. The bound is monotonically decreasing in the
magnitude of δ∗(τ) and it becomes trivial when δ∗(τ) = 0. Of course if δ∗(τ) = ∞ we
know that the set E does not contain any valid distributions, so it is reasonable that
P n
X(E) = 0. Below, we may revisit the discrete example to get a sense of the estimate

that Sanov’s theorem provides.

Example 4 (continuing from p. 14). Recall X = income, X = {High,Medium,Low}
and the experimental distribution is FX = (p1, p2, p3) = (0.2, 0.2, 0.6). For a given n we
can list the types of sequences of size n that can be generated. Here the count of High and
Medium income individuals will completely determine the type of a sequence (since for
fixed n, #Low = n− #High− #Medium. For n = 3 for example, there are 10 possible
sequence types each corresponding to one of the sequences (3, 0, 0), (2, 0, 1), (2, 1, 0),
(1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3) divided by 3. Therefore
|P3| = 10. They are displayed below in barycentric coordinates as red points in the
2-simplex. The set E is also displayed in yellow.
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Figure 3: Distribution types for the 3 point space, n = 3

For n = 10 there are 110 distinct sequence types, that is, |P10| = 110. They are
displayed in the figure below.

Figure 4: Distribution types for the 3 point space, n = 10

Note that each of the sequence types may contain many sequences. Because the
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draws from the distribution FX are i.i.d, all sequences of the same type have the same
probability under PX . The result in Sanov’s theorem gives a finite sample upper bound on
the probability that a sequence Xl = (X1,l, · · · , Xn,l), drawn from the joint distribution
P n
X belongs to the set E. For n = 3 there are only 4 sequence types that are in E,

namely (3, 0, 0), (2, 0, 1), (2, 1, 0), (1, 2, 0). What is the probability associate to them?
P 3
X(xl ∈ E) = 0.128. On the other hand, we know that δ∗(τ̃) = so Sanov’s theorem gives

the upper bound e−3·0.2492 = 0.474 so the bound is fairly loose. On the other hand, when
n = 10, 26 out of 110 sequence types fall in the set E. The total probability associated
with those sequences is 0.0174. Sanov’s theorem gives an upper bound of 0.0827. Finally
for n = 30 P 30

X (x ∈ E) = 0.000083, while Sanov’s bound gives P 30
X (x ∈ E) ≤ 0.00057.

The bound is known to be optimal in the exponent for limn → ∞.

2.5.2 Benchmarking robustness using census covariates

Several papers have proposed benchmarking the sensitivity to unobservable variables,
which is often not computable, using observable variables. For example, Cinelli and
Hazlett [2020] and Oster [2019] who use the explanatory power of observed covariates to
benchmark for the explanatory power of unobserved covariates. This section suggests a
similar approach for the robustness problem. In the context of this paper I would like to
quantify whether a given value for the robustness parameter, δ∗ is high or low. To this
end I propose to leverage the subset of covariates in Xc, which are available in both the
(quasi)-experimental environment and in the extrapolation environment to benchmark
the robustness measure. At the population level it amounts to:

• computing the robustness metric δ∗ through Equation (10)

• use the census information to compute DKL(P ′
Xc ||PXc), the KL divergence between

the distributions of the Xc covariates in the (quasi)-experimental population and
the new population

• compare the two measures

If the variables in Xc collectively differ across the two environments by the same
amount as Xe, observing δ∗ > DKL(P ′

Xc||PXc) suggests that the (quasi)-experimental
claim can be extrapolated to the new environment. In words, it says that the distance,
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measured by the KL divergence between the observable census variables in the two
environments would not be large enough to invalidate the claim drawn from the (quasi)-
experimental evidence. In principle, one could develop a formal test that uses both δ∗

and DKL(P ′
Xc||PXc) (under the assumption that the true distance in Xe is no larger than

the true distance in Xc) to provide a pessimistic policy-maker with a clear rule on when
to expand the policy given the census data. For now, transforming the heuristic exercise
above in a full fledged two-sample test is beyond the scope of this paper and I leave it
to future research.

2.6 A conditional limit theorem interpretation for F ∗
X

We have seen that the value of δ∗(τ) has a natural interpretation as a probability
bound. What about the least favorable distribution F ∗

X , the minimizer of Equation (4)?
It turns out that an extension of the result by Sanov provides a new perspective for it.
Adapting a version of Theorem 1 in Csiszár [1984], one obtains a striking result on the
joint distribution of the data (X1, · · ·Xn):

Theorem 12. (adapted from Csizar, 1984) Let Assumptions 2 - 4 hold. Set E = {Q :∫
X τ(x)dQ ≤ τ̃}, let PX be the probability measure of i.i.d data. Denote the empirical

distribution of X1, · · · , Xn as F̂n. Then:

(i) the random variables X1, · · · , Xn are asymptotically quasi-independent9 conditional
on the event that the empirical distribution F̂n ∈ E

(ii) P (Xi|F̂n ∈ E) ≈ P ∗(Xi) for i = 1, · · · , n

Proof. The proof follows straightforwardly from Theorem 1 in Csiszár [1984] noting that,
by Assumption 4, condition (2.18) in Csiszár [1984] is satisfied. For finitely supported
X, an easier proof is given in Theorem 11.6.2 in Cover [1999].

In contrast to Theorem 11 which holds for any n, Theorem 12 is an asymptotic
result: the approximation of the conditional law in ii) depends on the sample size n.
The interpretation is the following, P ∗n := Πn

i=1P
∗ is the approximate joint law of the

covariates X1, · · ·Xn, if we learned that the empirical distribution F̂n does not satisfy the
experimental conclusions. To visualize this, imagine drawing S-many repeated samples

9See Definition 2.1 in Csiszár [1984].
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of n observations each from the covariate distribution. Then, combining the Sanov
theorem in Section 2.5.1 together with the Csiszár [1984] conditional limit theorem tells
us that:

(i) limS→∞
1
S

∑S
l=1 1[F̂n,l ∈ E] ≤ e−nδ∗(τ̃)

(ii) P n
X(Xi|F̂n,l ∈ E) ≈ P ∗n(Xi) for any i = 1, · · · , n and l = 1, · · · , S

Part (i) says that the proportion of samples of size n that fail to satisfy the ex-
perimental evidence is bounded above by e−nδ∗(τ̃). This interpretation is closest to the
robustness approach in Broderick et al. [2020] which is based on dropping a percentage
of the sample. The difference is that their procedure focuses on a proportion of the fixed
sample, whereas this result concerns the proportion all possible samples of size n that
could be drawn from the joint distribution of P n

X . A small value for the robustness metric
δ∗(τ̃) will not control this probability very well. Part (ii) gives an approximate law for
the joint distribution P n

X of the collection of samples that invalidate the experimental
results. This tells us that the F ∗

X is not just a by-product of the optimization problem
in Equations (4) and (5) but it gives the approximate law of the data if we happen to
draw a sample l which does not satisfy the experimental results.

3 Estimation and Asymptotic Results

In this section I introduce a semi-parametric estimator for my robustness metric
δ∗, according to Definition 3 ii) and I characterize its asymptotic properties. I show
that the robustness metric can be estimated using a GMM criterion function which
only depends on the (quasi)-experimental distribution and on the CATE τ(x), both
of which are identified in the quasi experiment. The theory is based on constructing
the nonparametric influence function correction for the de-biased GMM procedure in
Chernozhukov et al. [2020] to account for flexible nonparametric estimation of τ(x).
The proofs are in the Appendix I.

3.1 An empirical estimate of the robustness metric δ∗

The closed form solution in Lemma 7 suggests a natural estimator based on empirical
averages. In particular, one would like to replace Equation (10) with its sample analog
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using the Generalized Method of Moments (GMM) framework. Consider the quantities:

ν0 :=
∫

X
exp(−λ0(τ(x) − τ̃))dFX(x)

where λ0 is defined implicitly as the unique solution to:

∫
X

exp(−λ0(τ(x) − τ̃))(τ(x) − τ̃)dFX(x) = 0

The pair of parameters that solves the population moment condition is denoted by
θ0 = (ν0, λ0)T . Ultimately, the robustness measure δ∗ = − log(ν0) is the parameter of
interest. The asymptotic theory for δ∗ follows directly from establishing the asymptotic
theory for θ̂ = (ν̂, λ̂)T hence, I will focus on these parameters in this section. The
parameter space Θ ⊆ R2 satisfies some constraints. First, observe that if the policy-
maker’s claim (ATE ≥ τ̃) holds with a strict inequality for the (quasi)-experimental
distribution, then the true δ∗ > 0. This implies a restriction on ν0 < 1. Moreover,
ν0 > 0 because by the properties of the exponential, the quantity exp(−λ(τ(x) − τ̃) > 0
for all x ∈ X . Hence, the restriction on ν is 0 ≤ ν0 ≤ 1.

Let W = (X,D, Y ) be the data. Then, as in Newey and McFadden [1994] we can
write the moment condition jointly for ν0 and λ0 as:

E[g(W, θ, τ)] = E

 exp(−λ0(τ0(X) − τ̃)) − ν0

exp(−λ0(τ0(X) − τ̃))(τ0(X) − τ̃)

 =
0
0

 (13)

where τ0(X) denotes the true value of CATE. Assumptions 1–4 guarantee that the
parameters of interest (λ0, ν0) are (globally) identified by Equation (13). Because the
true value for τ0(X) is an unknown but estimable population quantity, I consider a
feasible version of Equation (13) that uses an estimate τ̂(X) in place of τ0(X). One
could define the vector θ̂ = (λ̂, ν̂)T is defined as the approximate solution to the empirical
moment:

En[g(W, θ, τ̂)] =
 1

n

∑n
i=1 exp(−λ̂(τ̂(Xi) − τ̃)) − ν̂

1
n

∑n
i=1 exp(−λ̂(τ̂(Xi) − τ̃))(τ̂(Xi) − τ̃)

 =
0
0

 (14)

where τ̂(X) is a plug-in estimate of the conditional average treatment effect. While
Assumption 1 guarantees nonparametric identification of τ0(X), there are many ways
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that one could estimate it, both parametrically and nonparametrically. For example
Athey et al. [2016] uses random forest, Hsu et al. [2020] uses a doubly robust score
function.

One caveat of the estimator based on Equation (14) is that the identifying moment
conditions provided in Equation (13) are not Neyman orthogonal with respect to the
first-step estimator τ̂(X). As a result, the first-step estimation of τ̂(X) can, in general,
have a first-order effect on the estimator for θ0 = (ν0, λ0)T , and consequently on the esti-
mator for δ∗, and possibly lead to incorrect inferences on the robustness metric, a general
problem discussed in Chernozhukov et al. [2018]. Deriving primitive conditions on this
form of the moment condition requires ad-hoc conditions on the first-step nonparametric
estimator that can be hard or inconvenient to check in practice. As an alternative, I use
the debiased-GMM approach in Chernozhukov et al. [2020] that allows to choose flexible
estimators for τ0(X) while automatically correcting for the first-order bias.

3.2 Nonparametric influence function correction and de-biased
GMM estimator

In this section, I derive the nonparametric correction for the GMM estimator of
θ based on Equation (14). I map the causal quantities like τ(X) to the statistical
functionals that identify them and then explicitely construct the nonparametric influence
function for these functionals. Because these functionals are always implicitly regarded
as mapping the distribution function of the data, F , to some space, it is natural to
index the functional with a subscript F . For example the τ(X) = τF (X) because
depends of the distribution of the data F . The true distribution of the data will be
denoted as F0 and it is understood that τ0(X) = τF0(X). Recall that τF0(X) is a
causal parameter which needs to be identified through the distribution of the data. By
Assumption 1, τF0(X) can be nonparametrically identified as the difference between the
conditional means: τF0(X) = γ1,F0(X) − γ0,F0(X) where γ1,F (X) := EF [Y |X,D = 1]
and γ0,F (X) := EF [Y |X,D = 0]. The left hand side features a causal quantity while
the right hand side features two statistical quantities. The first step then has two
functions that need to be estimated. For convenience, I gather them into a single vector-
valued statistical functional γF = (γ0,F , γ1,F )T . When considering the de-biasing term to
correct for the first-step estimation of τF0(X), we actually need to consider the first-step
correction with respect to the full vector γF .
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Now consider a parametric sub-model for the distribution function, consisting of
Fr := (1 − r) · F0 + rH where F0 is the true baseline distribution function of the data
and H is an arbitrary distribution function which satisfies Assumption 1. For any
r ∈ [0, 1], Fr is a mixture distribution and hence, it is also a valid distribution function.
Moreover, if both F0 and H satisfy Assumption 1 then Fr does as well. In order to
de-bias the moment conditions in E[g(W, θ, τF )] with the approach of Chernozhukov
et al. [2020] one needs to compute the nonparametric influence function with respect
to τF . The nonparametric influence function maps infinitesimal perturbations of F
in the direction of H in a neighborhood of F0, to perturbations in R2 (because there
are 2 moment conditions). It does so linearly in H. In particular, the nonparametric
influence function of E[g(W, θ, τF )] with respect to F , labelled ϕ(·) is implicitly defined
by the equation below:

dE[g(W, θ, γFr)]
dr

∣∣∣∣∣∣
r=0

=
∫
ϕ(w, γF0 , θ, α)dH(w) (15)

Note that, other than the original arguments of g(·), which feature the vector of con-
ditional means γF0 , ϕ(·) is allowed to depend on additional nonparametric components,
gathered in α(·). In the next result I derive the nonparametric influence function explic-
itly.

Proposition 13. The de-biased GMM nonparametric influence function based on mo-
ment function g(·) is:

ϕ(w, θ, γ0, α0) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×
(
d(y − γ1,F0(x))

πF0(x) − (1 − d)(y − γ0,F0(x))
1 − πF0(x)

)

which could be written in the form:

ϕ(w, θ, γ0, α0) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×


α1,F0(x)
α0,F0(x)

T  d(y − γ1,F0(x))
(1 − d)(y − γ0,F0(x))
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with αF0(x) :=
α1,F0(x)
α0,F0(x)

 =
 1

πF0 (x)
1

1−πF0 (x)

.

There are two main multiplicative terms in ϕ(·). The first term is the derivative
of the moment conditions with respect to the first-step estimator. The second one is
the variation of individual treatment effects about their conditional mean, appropriately
weighted by the propensity score. One can immediately check that, by the law of iterated
expectations, EF [ϕ(W, θ, γ0, α0)] = 0 for any θ. Hence we can form the de-biased GMM
moment functions by taking:

ψ(w, γ, θ, α) = g(w, θ, γ) + ϕ(w, θ, γ, α) (16)

Notice that EF0 [ψ(W, θ, γ0, α0)] = 0 so an estimator for θ that uses the de-biased moment
function ψ(·) instead of g(·) will preserve identification. Standard conditions can be given
to guarantee V[ψ(W, θ, γ0, α0)] < ∞ so that ψ(Wi, θ, γ0, α0) is a valid influence function.
As emphasized in Chernozhukov et al. [2020] the de-biased GMM form of ψ(·) corrects
for the first order bias induced by replacing γ1,F0 − γ0,F0 , the statistical counterpart of
the true τF0 , with a flexibly estimated γ̂1 − γ̂0. In particular, for

√
n-consistency of

θ, the estimators for γ̂1 and γ̂0 only need to satisfy mild conditions on the L2-rate of
convergence in Assumption 5 below. This allows to characterize simple inference for the
robustness measure δ̂∗ while allowing for flexible nonparametric estimation of γ1,F0 and
γ0,F0 using a large collection of machine learning-based estimators which include, among
others, random forest, boosting, and neural nets. In practice, machine learning methods
can help when the covariate space is high-dimensional but the true τ0(X) has a sparse
representation.

The key property to guarantee de-biasing is given by the Neyman orthogonality of
the new moment conditions with respect to the first-step estimator, established in the
result below.

Proposition 14. Equation (16) satisfies Neyman orthogonality.

Proof. See Appendix I.
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Consider now the empirical version of the de-biased GMM equations:

ψ̂(θ, γ̂, α̂) = 1
K

K∑
k=1

1
|Ik|

∑
i∈Ik

(
g(Wi, θ, γ̂−k) + ϕ(Wi, θ̃, γ̂−k, α̂−k)

)

The de-biased GMM estimator takes advantage of a cross-fitting procedure where the
sample is split into K many folds. For each fold k = 1, · · · , K, the nonparametric
components in ψ(·), that is, the γ(·) and α(·) functions, are estimated on the observations
in the remaining (K − 1) folds which explains the indexing −k in the subscripts of γ(·)
and α(·). Sample splitting reduces own-observation bias and, together with the Neymann
orthogonality property established above, avoids complicated Donsker-type conditions
that would potentially not be satisfied for some first-step estimators of γ̂ and α̂, as
discussed in Chernozhukov et al. [2020]. Finally note that θ̃ is a consistent estimator for
θ needed to evaluate ϕ. For example one could use the θ from the plug-in GMM which
is consistent but may not be

√
n-consistent in general. The de-biased GMM estimator

is given by:

θ̂ = arg min
θ∈Θ

ψ̂(θ, γ̂, α̂) (17)

To establish
√
n-convergence of the GMM estimators for θ, some quality conditions on

the L2 rates of convergence of the first-step estimators for γ and α are required.

Assumption 5. For any k, ∥γ̂−k − γ0∥2
L = oP (N− 1

4 ); ∥α̂−k − α0∥2
L = oP (1).

In Appendix I, I use Assumptions 1 – 5 to prove the influence function representation
for θ̂ to which a standard central limit theorem applies to establish the asymptotic
normality of the de-biased GMM estimator for θ = (ν, λ)T . This, in turn, allows to
conduct inference on the parameter of interest, δ∗ through a straightforward application
of the delta method.

Theorem 15 (Asymptotic normality of θ). Let Assumptions 1–5. For θ̂ defined in
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Equation (17):

√
n(θ̂ − θ0) d→ N (0, S)

S := (G)−1Ω(G′)−1

G := E[Dθψ(w, θ, γ0, α0)]
Ω := E[ψ(w, θ0, γ0, α0)ψ(w, θ0, γ0, α0)T ]

and Dθψ(·) is the Jacobian of the augmented moment condition with respect to the pa-
rameters in θ.

Proof. See Appendix I.

The parameter of interest follows from a straightforward application of the parametric
delta method.

Corollary 16 (Asymptotic normality of δ∗). Let δ̂∗ = − log(ν̂). Then

√
N(δ̂∗ − δ∗) d→ N

(
0, S11

ν2
0

)

where S11 is the (1,1) entry of the variance covariance matrix S in Theorem 15.

With the results of Theorem 15 one can obtain a point estimate δ∗, together with
a confidence interval for a pre-specified coverage level. Because of the nature of the
estimand, the researcher or the policy-maker, are likely to care especially about the lower
bound for δ∗. This is because overestimating the δ∗ implies that there is a distribution
of the covariates within the estimated δ̂∗ that invalidates the policy-maker’s claim. This
defies the entire purpose of the robustness exercise. On the other hand, underestimating
δ∗ may result in unduly conservative characterization of the set of distributions for
which the claim is valid, but it does not defy the purpose of the robustness exercise.
A similar, asymmetric approach is followed by Masten and Poirier [2020] who report a
lower confidence region for their breakdown frontier rather than a confidence band.
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3.3 Reporting features of the least favorable distribution

Lemma 7 gives an explicit formula for the least favorable distribution F ∗
X and shows

that it depends on λ0 and τ(X). Because of the interpretation of F ∗
X as the conditional

law of the data that we have given in Section F, the researcher may be interested in F ∗
X

directly. If X ⊆ Rd is even moderately high dimensional, it may be very inconvenient to
look at features of the estimated F ∗

X . Moreover, the rate of convergence of as estimator
of F ∗

X can, in general, be nonparametric. This is because, under some conditions, it
inherits the nonparametric rate of τ̂(X). Rather, the researcher could report particular
moments of F ∗

X that are of interest. This exercise is analogous to reporting moments
of the covariate distribution and compare them across treatment status to gauge at
covariate balance, like in Rosenbaum and Rubin [1984]. The researchers may want to
report moments of F ∗

X , in addition to the robustness metric δ∗. For example they may
want to report a vector of covariate means under the least favorable distribution F ∗

X and
compare it with the (quasi)-experimental distribution. In such a case, we would like to
construct an estimator for the moments of interest and establish the asymptotic theory
of these estimators. I give a convenient extension of Theorem 15, to include an arbitrary,
finite dimensional collection ζ ∈ Rs of moments of interest, along with the original θ
parameters.

Theorem 17 (De-biased estimator of least favorable moments). Let u : Rd → Rs, with
u ∈ (L∞(X , µ))s for µ some dominating measure of PX . Let ζ0 = EF ∗

X
[u(X)] ∈ Rs.

Define the following estimating equation for the parameters (θ̂, ζ̂), that is, the original
parameters of interest, augmented by ζ, the additional moments of the least favorable
distribution:

ψ̂u(θ, ζ, γ̂, α̂) := 1
K

K∑
k=1

1
|Ik|

∑
i∈Ik

 g(Wi, θ, γ̂−k) + ϕ(Wi, θ, γ̂−k, α̂−k)
gu(Wi, θ, ζ, γ−k) + ϕu(Wi, θ, ζ, γ̂−k, α̂−k)


where g(·), ϕ(·), γ(·) and α(·) are the same as in Propositions 13 – 27 and gu(·) and
ϕu(·), whose values are vectors in Rs are defined below.

gu(Wi, θ, ζ, γ) = u(Xi) exp(−λ(τ(Xi) − τ̃) − ν · ζ

ϕu(Wi, θ, ζ, γ, α) = u(Xi) exp (−λ(τ(Xi) − τ̃)) · (−λ)

×
(
Di(Yi − γ1(Xi))

π(Xi)
− (1 −Di)(Yi − γ0(Xi))

1 − π(Xi)

)
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(θ̂, ζ̂) := arg min
(θ,ζ)∈Rs+2

ψ̂u(θ, ζ, γ̂, α̂)T ψ̂u(θ, ζ, γ̂, α̂) + oP (1) (18)

Let Assumptions 1–5 hold. Then:

1√
n

K∑
k=1

∑
i∈Ik

ψu(Wi, θ, ζ, γ̂−k, α̂−k) = 1√
n

n∑
i=1

ψu(Wi, θ, ζ, γ0, α0) + oP (1)

Moreover

√
n

θ̂ − θ0

ζ̂ − ζ0

 d→ N (0, Su)

Su := (Gu)−1Ωu(Gu′)−1

Gu := E[Dθ,ζ ψ
u(W, θ, ζ, γ0, α0)]

Ωu := E[ψu(w, θ0, γ0, α0)Tψu(w, θ0, γ0, α0)]

where Dθ,ζ denotes the Jacobian matrix with respect to the parameters θ and ζ.

Proof. The proof follows the same structure of Theorem 15 and is omitted.

3.4 Simulation data

I conclude this section with a small Monte-Carlo exercise featuring three different
data generating processes (DGPs) with increasing degrees of observable heterogeneity.
To capture the idea of possibly high-dimensional experimental data, I consider a setting
with k = 100 covariates, all independent and each distributed uniformly on [0, 1] so
that X = [0, 1]k. To reflect the fact that only a few out of all available experimental
covariates are important to predict the treatment effect, I construct τ(x) to be sparse:
τ(x) is a function of of only 1,3 and 10 out of 100 covariates in DGP1, DGP2 and
DGP3 respectively. In each DGP, the potential outcomes also depend on an additive
unobservable noisy error term.10 To show that it is the heterogeneity that drives the

10In particular:
• DGP1: Y1 − Y0 = exp(X1) + U1 − U0;

• DGP2: Y1 − Y0 = exp(X1) · (X2 + 0.5) · (X3 + 0.5) + U1 − U0;

• DGP3: Y1 − Y0 = exp(X1) · (X2 + 0.5) · (X3 + 0.5) · Π10
j=4(0.1 ·Xj + 0.95) + U1 − U0.

(U1, U0) are uncorrelated normals with µ = 0, σ = 0.25.
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robustness, keeping the same baseline ATE for the three DGPs is fundamental. I choose
the shape of τ(x) to induce the same ATE across the three DGPs, regardless of the
heterogeneity of treatment effects, when evaluated with respect to the experimental
distribution. I consider M = 1000 replications for each DGP and a sample size of
N = 10, 000. The first step τ(x) is estimated through K-fold cross-fitting, using either
boosting or random forest to estimate γ1(x), γ0(x) and the propensity score πX(x).
The number of trees and splitting criteria are tuned to the sample size through heuristic
criteria. In practice one would use within-fold cross-validation to tune hyper-parameters.
I estimate the implied δ̂∗(τ̃), with τ̃ = 1.3 and evaluate its bias, variance and MSE against
the true value δ∗. Fixing the ATE and the experimental distribution of the covariates
guarantees that a change in the population value for δ∗ is only capturing the change in
heterogeneity. I report the estimates of δ∗ using both the plug-in GMM and de-biased
GMM approach below. Note that, because of K-fold cross fitting, the own-observation
bias in the plug-in GMM is attenuated. Still, the de-biased, GMM shows very good bias
improvements over the plug-in approach.

Table 1: Monte Carlo Simulation reports the DGP, the population value for the robust-
ness metrics, ML estimator used for the nonparametric components and MSE, Bias and
Variance. Sample size n = 10, 000, number of simulations M = 1000.

Data δ∗(τ̃) Method γ(·), α(·) est MSE Bias2 Variance

DGP1 0.4485
plug-in Random Forest 3.7568 · 10−4 0.1235 · 10−4 3.6334 · 10−4

Boosting 1.6311 · 10−3 1.2056 · 10−3 0.4255 · 10−3

de-biased Random Forest 3.7148 · 10−4 0.1030 · 10−4 3.6117 · 10−4

Boosting 1.5278 · 10−3 1.1038 · 10−3 0.4240 · 10−3

DGP2 0.1344
plug-in Random Forest 5.0716 · 10−3 4.9474 · 10−3 0.1242 · 10−3

Boosting 1.1218 · 10−3 1.0622 · 10−3 0.0597 · 10−3

de-biased Random Forest 3.6640 · 10−3 3.5616 · 10−3 0.1024 · 10−3

Boosting 0.7309 · 10−3 0.6749 · 10−3 0.0560 · 10−3

DGP3 0.1328
plug-in Random Forest 5.2825 · 10−3 5.1558 · 10−3 0.1267 · 10−3

Boosting 1.4637 · 10−3 1.3991 · 10−3 0.0646 · 10−3

de-biased Random Forest 3.8369 · 10−3 3.7326 · 10−3 0.1043 · 10−3

Boosting 0.9312 · 10−3 0.8716 · 10−3 0.0596 · 10−3

Table 1 report the results. First, observe the reduction in the population value of
δ∗(τ̃) as heterogeneity increases in the DGP. This is entirely driven by an increase in
the heterogeneity of τ(x) since the ATE is the same across the three DGPs. This means
that a smaller shift in the covariates is required to invalidate the policy-maker claim
(ATE ≥ 1.3). As a result, the robustness metric decreases. Moving from DGP1 to
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DGP2 and DGP3 the population value of the robustness metric drops from 0.4485 to
0.1344 to 0.1328. The decrease is most accentuated between DGP1 and DGP2 because
of the functional form of τ(x).

In DGP1 we can see that the heuristic choice for the hyper-parameters in boosting
likely results in under-fitting the data, leading to a bias an order of magnitude higher
than the variance. For DGP1, the de-biasing procedure results in approximately 20%
squared bias reduction which drives the reduction of approximately the same percentage
in the Mean Squared Error. Variances are comparable between plug-in and de-biased
GMM. The random forest procedure is better overall for MSE criterion. In DGP2, the
bias dominate the variance component, suggesting both random forest and boosting are
under-fitting. This is likely do to the absence of a within-fold cross-validation step.
In this case,the de-biased GMM reduces the squared bias by about 40% for both ran-
dom forest and boosting methods. The variances are again very similar across plug-in
and de-biased and boosting has about half of the variance of random forest. DGP3’s
heterogeneity increases slightly, reducing the associated δ∗(τ̃). Like in DGP2, the bias
dominates the variance component regardless of the first-step estimation method. Sim-
ilarly, the de-biased GMM approach results in substantial bias reduction in comparison
to the plug-in GMM approach.

4 Empirical Application: How robust are the effect
of the Oregon Medicaid expansion?

In this section, I apply my approach to study the robustness of health insurance
policy with respect to shifts in the distribution of covariates. The key reference is
Finkelstein et al. [2012], which uses experimental data to study the effect of the Oregon
Medicaid expansion lottery on health-care consumption and financial outcomes. The
positive results of the study are of great interest for any policy-maker who is potentially
interested in implementing a similar intervention in their state. Because the populations
of recipients are likely to differ across states, I propose to complement the experimental
result in Finkelstein et al. [2012] with an estimate of my robustness metric δ∗ to quantify
the smallest shift in important experimental covariates needed to eliminate the positive
effects of the insurance lottery.
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4.1 Institutional context and heterogeneity

Between March and September 2008, the state of Oregon conducted a series of lot-
tery draws that would award the selected individuals the option to enroll in the Ore-
gon Health Plan (OHP) Standard. OHP Standard is a Medicaid expansion program
available for Oregon adult residents that are between 19 and 64 years of age and have
limited income and assets. Finkelstein et al. [2012] studies the effect of the insurance
coverage on a set of metrics that include health-care utilization (number of prescrip-
tion, inpatient, outpatient and ER visits), recommended preventive care (cholesterol
and diabetes blood test, mammogram and pap-smear test) and measures of financial
strain (outstanding medical debt, denied care, borrow/default). The study uses both
administrative and survey data but only the survey data is publicly accessible through
Finkelstein [2013]. The Online appendix of Finkelstein et al. [2012] discusses a variety of
robustness concerns that center on external validity. For example they note that scaling
up the experiment can induce a supply side change in providers’ behavior. Additionally,
they acknowledge substantial demographic differences between the study population in
Oregon versus the potential recipients in other states. These differences include, for ex-
ample, a smaller African American and a larger white sub-population in Oregon versus
other states. From the survey data it appears that the Oregon lottery participants are
older and their health metrics under-performs the national average. If these covariates
are important in determining the treatment effects of the health insurance, the results of
Oregon experiment may not be robust to a change in the distribution of covariates. This
robustness is especially important to quantify if the experimental results are to be ex-
trapolated for policy adoption in other states. I stress the fact that, in this context, the
re-weighting procedure in Hartman [2020] or Hsu et al. [2020] is not applicable because
it lacks the survey-specific health data that are likely to be most predictive of treatment
effect heterogeneity. Absent full covariate data form other states, I proposed to study
the robustness of the policy by augmenting each of the treatment effect estimators in
Finkelstein et al. [2012] with my robustness metric, which can be computed by exploiting
the heterogeneity in the publicly available survey data Finkelstein [2013].

4.2 Robustness in the Oregon Medicaid Experiment

For the robustness exercise I focus on the Intention to Treat Effect (ITT) of the Ore-
gon Medicaid Experiment lottery. As noted in Finkelstein et al. [2012], not all recipients
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who were awarded the option to enroll in the insurance program actually enrolled. For
this reason Finkelstein et al. [2012] estimates both an ITT and a LATE estimate. One
could argue that the ITT is the key parameter for a policy-maker interested in offering
the same intervention. To map my framework to the application, recall that the ITT
effect can be considered as an ATE where the treatment D is simply the “the option
to enroll in the health insurance” so the robustness approach discussed in the paper
carries over to the ITT with only notational changes. I consider hypotheses of the form
ITTj ≥ τ̃ or ITTj ≤ τ̃ (depending on the outcome measure of interest) where j indexes
a health-care utilization or a financial strain outcome, following the notation convention
in Finkelstein et al. [2012]. As noted in Finkelstein et al. [2012] all health-care utilization
outcomes are defined consistently so that a positive sign for ITT means an increase in
utilization. Similarly, all financial strain outcomes are defined so that a negative sign for
the ITT means a decrease in financial strain. I focus on 2 value of interest for τ̃ for each
of the outcome measures. One of the values is τ̃ = 0 which reflects the claim that the
ITT is non-negative (for health-care utilization outcomes), or non-positive (for financial
strain outcomes). The second value is τ̃ = tj = zασj where σj is the standard deviation
of the ITT for outcome j. tj is the critical value for the t-statistic of a one sided test
with null hypothesis ITT ≤ 0 for some pre-specified α. As a result δ(tj) proxies for the
magnitude of a change in the covariate distribution that would make the ITT statisti-
cally not distinguishable from a non-positive or non-negative outcome (respectively).11

Because σj is in general not available, in the empirical procedure I use σ̂j in place of
σj. The researcher interested in different hypothesis may adapt the procedure easily by
specifying a τ̃ with a value different from the two discussed above.

For the application I group the outcome measure in three groups: measure of health-
care utilization, measures of compliance with recommended preventive care and measures
of financial strain. I replicate the estimates of the intention to treat effect (ITT) for out-
come variables in each of the three groups in Finkelstein et al. [2012] from a reduced
form regression of the outcome variable on the lottery indicator and controls. The regres-
sion includes survey waves indicators, household size indicators and interaction terms
between the two as controls. Because the regression is fully saturated, the estimates
for the ITT are nonparametric. In my robustness exercise I focus on covariates that

11This interpretation is heuristic, in the sense that the standard deviation of the ITT estimate can
depend on the distribution of the covariates as well. It is possible to impose an additional constraint
on optimization problem, requiring that the variance of the treatment effects about the ITT remains
the same. Such a construction fall into the case discussed in Appendix C.
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appear critical for external validity and are likely to differ across states. Among others,
Finkelstein et al. [2012] identifies gender, age, race, credit access, education and prox-
ies for health status. To capture the potential heterogeneity, I estimate a Conditional
Intention to Treat effect (CITT) with the set of covariates listed above.12 Finally I use
the estimated CITT to compute the measure of robustness δ∗ for each of the outcome
variables in the three categories and report it, together with the original ITT estimate,
for both values of τ̃ discussed above.13 All outcomes are measured on the survey data
Finkelstein [2013].

In Table 2, column 2, 3 and 4 contain respectively the experimental ITT for each
outcome variable, the estimates for δ∗(0) and the estimates for δ∗(tj). Here tj = ±1.645 ·
σj depending on whether the experimental ITT is positive or negative. As an example,
consider a measure of financial strain, like whether a patient had to borrow or skip a
payment because of medical debt. The intention to treat effect is equal to -0.0515 with
standard error 0.0060. δ∗(0) = 0.367 represents the smallest distributional shift of the
covariates that can induce an ITT equal to 0. The δ∗(tj) = 0.265 represents the smallest
distributional shift in the covariates that can result in an ITT = −1.645 · 0.0060 =
−0.0118 which leads to not rejecting the hypothesisH0 : ITT ≥ 0. For any distributional
shift that is smaller than δ∗(tj) the statistical claim H0 : ITT ≥ 0 would be rejected.

I highlight two benefits of this robustness metric. First, it allows a comparison of the
robustness across outcomes because each δ∗ has the same units and it is measured on the
same covariate space. Second, the fourth column of Table 2 has a natural interpretation
as a breakdown point: what is the smallest perturbation of the distribution of covariates
that will break statistical significance of the ITT? A policy-maker may consider findings
with larger δ∗ as more readily applicable to her own policy setting. From the δ metrics
reported in Table 2 I notice that among the health-care utilization metrics, the ITT on
outpatient visits is the most robust while the ITT on ER visits is the least robust. For
the measures of financial strain the ITT on out of pocket expenses is the most robust
and the ITT on instances of refused care because of medical debt is the least robust.
If one had access to census data, one could choose a set of census variables of interest
and compute the KL divergence between the distribution of the Oregon census variables

12From a technical standpoint, the CITT estimated with a discrete set of covariates is still a parametric
estimator. In practice, it can be obtained by a fully saturated regression where the lottery indicator is
interacted with all possible combinations of dummies.

13Comparable (survey weighted) ITT estimates can be found in column 2 labelled Reduced form, of
2. Discrepancies with the (unweighted) ITT effects I compute are due to survey weights.

40



Table 2: δ∗ robustness metric for the health-care utilization and financial strain outcomes
in Finkelstein et al. [2012]. ITT for measures of preventive care are indistinguishable
from 0 for the experimental distribution so the robustness metric is trivial in this case.
The measure is evaluated at τ̃ = 0 and τ̃ = tj = ±1.645σj for each outcome, depending
on the relevant sign of the estimated ITT. The third group of outcomes, preventive care
measures, all have statistically insignificant ITT, leading to a 0 robustness for all δ∗(tj).
I omit them in this table.

Outcome Experimental ATE δ∗(0) δ∗(tj)
health-care Utilization
Prescriptions 0.1296

(0.044)
0.380
(0.007)

0.068
(0.002)

Out-patient visits 0.2986
(0.039)

1.552
(0.022)

0.965
(0.014)

ER visits 0.0064
(0.013)

0.009
(0.001)

0
n/a

In-patient visits 0.0081
(0.005)

0.119
(0.003)

0
n/a

Financial Strain
Out of pocket expenses −0.0622

(0.0069)
0.462
(0.030)

0.346
(0.023)

Outstanding expenses −0.0529
(0.0070)

0.290
(0.0231)

0.204
(0.016)

Borrow/Skip payments −0.0515
(0.0060)

0.367
(0.019)

0.265
(0.014)

Refused care −0.011
(0.0040)

0.063
(0.006)

0.013
(0.002)

and a target state’s census variables. Then the researcher use this computed measure
to benchmark the magnitude of the robustness metrics in Table 1 to assess whether the
magnitude of each δ∗ is high or low, relative to the observed differences in the census
variables.

5 Conclusion
Robustness of (quasi)-experimental findings is an importance premise of evidence

based policy-making. In this paper I propose a metric δ∗ to quantify the robustness of
(quasi)-experimental findings with respect to a shifts in the distribution of the covariates.
I focus on claims on aggregate policy effects of the type (ATE ≥ τ̃). While I focus on
ATE as a main object of interest, the extension to other linear policy parameters is
straightforward. I characterize my robustness metric as the minimal distance, in terms
of KL divergence, between the set of covariate distributions that invalidate the claim and
the (quasi)-experimental covariates. My robustness metric gives a nonparametric, one-
dimensional summary that links treatment effect heterogeneity, (quasi)-experimental
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findings and covariate shifts. Because the computation of the δ∗ robustness metric for
ATE requires computing CATE, I employ the debiased-GMM approach to allow for
CATE to be estimated using a large collection of machine learning techniques, which
only need to satisfy mild requirements on their L2 norm convergence rates. These
include, for example, lasso, random forest, boosting, neural nets.

I apply my framework to assess the robustness of the results in Finkelstein et al.
[2012] about the Oregon Medicaid Experiment. I consider a set of covariates including
gender, race and lottery timing and find that the increase in outpatient visits and the
decrease in out-of-pocket expenses are, respectively the most robust findings among
the measure of health-care utilization and financial strain. For most other measures,
relatively small shifts in the covariate distributions appear to invalidate the results.
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A Another look at the Lagrange multiplier λ

The formulation of the optimization problem in Equation (4) concerns a policy-maker
who wishes to maintain the claim ATE ≥ τ̃ so that the constraint set in Equation
(5) takes the opposite direction of the inequality. The formulation with the Lagrange
multiplier in Equation (9) is without loss of generality. If the policy-maker is interested
in maintaining a claim of the type ATE ≤ τ̃ , the Lagrange multiplier would enter
Equation (9) with a negative sign, or equivalently, if we want to preserve Equation (9),
the value of the Lagrange multiplier would be negative.

The Lagrange multiplier λ in Equation (9) can give insight in what happens moving
from the experimental distribution to the least favorable distribution. Note that λ has
the opposite sign as the difference between the (quasi)-experimental ATE and the target
ATE. To see this, we consider how the target ATE relates to the CATE. For each given
τ̃ there is a partition of the covariate support X into three sets, depending on what will
be down-weighted or up-weighted by the least favorable distribution. The weight is given
by:

w(x) = exp(−λ(τ(x) − τ̃))∫
X exp(−λ(τ(x) − τ̃))dFX

so we see, after simplifying, that w(x) = 1, i.e dF ∗
X and dFX coincide, iff:

exp(−λτ(x)) =
∫

X
exp(−λτ(x))dFX

so the three sets are given by:

X − := {x ∈ X s.t. exp(−λτ(x)) − EPX [exp(−λτ(x))] < 0}

X + := {x ∈ X s.t. exp(−λτ(x)) − EPX [exp(−λτ(x))] > 0}

X 0 := {x ∈ X s.t. exp(−λτ(x)) − EPX [exp(−λτ(x))] = 0}

For example, suppose that the researcher wants to support the claim ATE ≥ τ̃ , which
holds for the experimental ATE. Then, in order to achieve a lower ATE the least favorable
distribution will have to shift weight from X + to X −. These sets in the partition will
in general not coincide with the sets {x ∈ X s.t. τ(x) − τ̃ < 0}, {x ∈ X s.t. τ(x) = τ̃}
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and {x ∈ X s.t. τ(x) < τ̃}. One case when they coincide is when FX follows the normal
distribution.

B Relating parametric forms of least favorable dis-
tributions with assumptions on CATE

Lemma 7 gives a solution to the policy-maker’s problem that does not depend on a
specific functional form for CATE nor on a parametric assumption for the experimen-
tal distribution FX . Leveraging the closed form solution I show that if the conditional
treatment effect function does follow a particular form and the experimental distribu-
tion belongs to a certain parametric family, we can guarantee that the least favorable
distribution belongs to the same parametric family, up to a shift in the parameters.

Definition 18. We say that a class of parametric distributions indexed by θ, denoted
F θ
X is least-favorable closed with respect to a parametric class of Conditional Average

Treatment Effects, τ(x)η, indexed by η ∈ H if for any θ and η, the least favorable
distribution F ∗

X = F θ∗
X for some θ∗ ∈ Θ. The choice of θ∗ will in general also depend on

features of η as well.

This means that the least favorable distribution belongs to the same parametric class
as the original, experimental distribution. This idea is similar to the conjugate prior
construction where the posterior distribution belongs to the same class of priors if the
likelihood is within a conjugate parametric class. The distributional shift can then be
thought of as a parameter shift.

Proposition 19 (Quadratic-Normal least favorable closed-ness). The parametric class
N (µ, σ2) is least favorable closed for quadratic Conditional Average Treatment Ef-
fects. That is, if X ∈ Rk follows the multivariate normal distribution X ∼ N (µµµ,ΣΣΣ)
where ΣΣΣ is p.d. and τ(x) = xTAxxTAxxTAx+xTβxTβxTβ + c for βββ ∈ Rk then F ∗

X is the measure induced
by X∗ ∼ N (µ∗µ∗µ∗,Σ∗Σ∗Σ∗) with µµµ∗ = (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ − λβββ) and Σ∗Σ∗Σ∗ = (ΣΣΣ−1 + 2λAAA)−1,
provided that (ΣΣΣ−1 + 2λAAA)−1 is p.d. The parameter λ is defined as in Equation (9).

Proof. See Appendix I.
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Corollary 20 (Linear-Normal least favorable closed-ness). If τ(x) = xTβxTβxTβ and X ∼
N (µ,Σµ,Σµ,Σ) then X∗ ∼ N (µ∗,Σµ∗,Σµ∗,Σ) where µ∗µ∗µ∗ = µµµ− λΣβΣβΣβ.

Proof. Follows from 19 when AAA = 0.

An extension of Proposition 19 could be shown to hold for the more general class
of distributions in the exponential family given by f(x|θ) = g(θ)h(x) exp(η(θ)TT (x))
but this is beyond the scope of this paper. The parametric example gives some addi-
tional insights in the geometry of the policy-maker’s problem, which could also help to
understand the analytical expression for the least favorable distribution above. Con-
sider the univariate case (d = 1) where FX is the normal distribution with mean µ

and standard deviation σ. The policy-maker’s desired claim is ATE ≥ 0. The con-
ditional average treatment effects are linear in the only covariate, that is τ(x) = πX

for some π ∈ R. Because CATE is linear in X, the ATE is only a function of the
population mean µ. As a result, the feasible set of the policy-maker’s problem in Figure
5 is the half space µ ≤ 0. Proposition 19 allows us to reduce the problem to a finite
dimensional problem which we can solve with the usual KKT conditions. Observe that
DKL(N (µ∗, σ∗)||N (µ, σ)) = 1

2

(
log

(
σ2

σ∗2

)
+ σ∗2

σ2 − 1 + 1
σ2 · (µ− µ∗)2

)
. In that case:

min
(µ∗,σ∗)∈R×R+

1
2

(
log

(
σ2

σ∗2

)
+ σ∗2

σ2 − 1 + 1
σ2 · (µ− µ∗)2

)
s.t. πµ∗ ≤ τ̃

where the constraint is simplified because of the linear functional form of CATE and
linearity of the expectation operator.
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Figure 5: Univariate Normal Distribution, Linear CATE. Each point in the graph repre-
sents a normal distribution parametrized by its mean and standard deviation N (µ, σ2).
The starting distribution, the experimental is taken to be P = N (4, 2). The contour
lines represent the KL divergence with respect to the experimental distribution. The
policy-maker’s desired claim is ATE ≥ 0. The feasible set shaded in yellow represents
all univariate normal distributions that satisfy ATE ≤ 0. When CATE is linear (that is
τ(x) = πX), the only parameter that contributes to the ATE is the mean µ so the feasi-
ble set is parallel to the σ axis. As a result, the least favorable distribution, labelled as
P∗, amounts to a mean shift from µ = 4 to µ∗ = τ̃

π
= 0 and no shift in the σ parameter.

The KKT conditions imply:

µ∗ = µ− λπσ2

σ∗ = σ

λ = 1
πσ2

(
µ− τ̃

π

)

The least favorable distribution amounts to a mean shift of the prescribed magnitude
and no change in the variance. Contrast the example above with the case where the
CATE is allowed to be quadratic. Proposition 19 still applies, hence the problem can
still be formulated as minimizing over the paramteric space (µ∗, σ∗). This time though,
the variance of the covariate X matters in determining the ATE and the feasible set
reflects this.
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Figure 6: Univariate Normal Distribution: Quadratic CATE. The setting is identi-
cal as in Figure 5 but here is quadratic, τ(x) = 0.8 · X2 + 8 · X. As a result,
ATE(µ, σ) = 0.8 · (µ2 + σ2) + 8µ so both parameters of the covariate distribution con-
tribute to determining the ATE. The feasible set in yellow has nonflat curvature. The
least favorable distribution, labelled as P∗, features a parameter shift in both the mean
and the variance.

C Constrained Classes

An applied researcher may wish to restrict the class of distributions for problem 1 by
imposing additional constraints. For example, they may want to fix the certain moments
of the experimental distribution.14 The computational price to pay for each additional
constraint is one additional Lagrange multiplier per constraint as detailed out in Ho
[2020]. For example, for a known moment function q : X → R we want:

∫
X
q(X)dFX =

∫
X
q(X)dF ′

X

This requirement restricts the space of feasible probability distributions because it asks
that the least favorable distribution preserves the additional moment. From the per-
spective of robustness, the value of the problem δ∗ for the constrained problem must be

14Note that finitely many moment restrictions would still amount to searching the KL infimum within
a infinite dimensional class of probability distributions, and, as such, the nonparametric nature of the
problem persists.
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larger or equal than the value for the unconstrained problem. That is:

inf
dF ′
X : dF ′

X≪dFX ;P ′
X(X )=1

DKL(F ′
X ||FX) ≤ inf

F ′
X : F ′

X≪FX ;P ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃
∫

X
τ(x)dF ′

X(x) ≤ τ̃∫
X
q(x)dF ′

X(x) = q

Assumptions about moment preservation aides the robustness to external validity of a
causal claim.
In case of additional constraints the solution to the KL problem takes the form:

dF ∗
X

dFX
= exp(−λ(τ(x) − τ̃))∏L

l=1 exp(−µl(q(x) − q̃))∫
X exp(−λ(τ(x) − τ̃))∏L

l=1 exp(−µl(q(x) − q̃))

and each Lagrange multiplier can be solved by:

∫
X

exp(−µl(q(x) − q̃))(q(x) − q̃)dFX = 0

For estimation, the additional restrictions result in L many additional parameters, one
for each Lagrange multiplier that needs to be computed. One could adapt the estima-
tion framework in Section 3 and have θ ∈ Θ ⊆ RL+2 gathers the original parameters
α and λ as well as the Lagrange multipliers for the population optimization problem
µ1, µ2, · · · , µL. At the cost of a more cumbersome notation, all the asymptotic results
in Section 3 apply.

D Partial identification of CATE
In this section, I consider the case where the main ingredient needed to identify

the robustness metric, τ(x) is only partially identified. This situation is important in
practice. For example, with one-sided noncompliance τ(x) is only partially identified.
In this section I will show that one can still recover bounds for δ∗(τ̃) that are robust to
this partial identification.

In section 2.2, the covariate shift assumption allowed us to write the ATE as a linear
functional of the covariate distribution, greatly simplifying the treatment. This linear
functional is fixed because τ(x) is identifiable.
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Suppose we can set identify τ ∈ T . For example τ(x) could be identified up to a
finite dimensional parameter or one could have an identification region where any τ ∈ τ

satisfies τ(x) ≤ τ(x) ≤ τ(x), that is, there are identification bands bounding any τ ∈ T
above and below. Then we can compute a conservative version of the robustness metric
define below:

δ∗(τ̃) := inf
τ∈T

inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃

Because now τ(·) is not identified, the problem above considers the least favorable
among the ones in the set T . Because τ controls the shape of the feasible set we can
rewrite it as

δ∗(τ̃) := inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃ for some τ ∈ T

Now regard the constraint set as a collection of Fτ := {F ′
X :

∫
X τ(x)dF ′

X(x) ≤ τ̃} for
a given τ . It is immediate to notice that, if τ ′(x) ≤ τ(x) point-wise, then Fτ ⊆ Fτ ′ .
That is, if a CATE that is dominated point-wise (or in fact FX almost everywhere) the
constraint set admits a larger class of distributions. As a result, for τ we have, for any
τ ∈ T , Fτ ⊆ Fτ . But this greatly simplifies the problem since now it is enough to write:

δ∗(τ̃) := inf
dF ′
X : dF ′

X≪dFX ;dF ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃

so now the problem can be solved for the lower bound of the identified set. Again,
this interpretation of delta amounts to considering robustness to the lack of identification
the CATE. A similar argument applies for the reverse inequality (ATE ≤ τ̃) and τ .
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E Re-evaluating policies over time

In the main paper, the policy-maker is concerned with extrapolating experimental
results to different policy contexts. In the application, this takes the form of extrapolat-
ing the Medicaid extension program to other states. In this section I show that we can
have an alternative interpretation that emphasizes changes over time rather than across
regions. According to this interpretation, the measure of robustness δ∗ captures the
minimal change in demographic trends that is needed to invalidate a particular policy
conclusion.

Consider a time horizon t = −1, 0, 1, 2, · · · , T . Suppose that a policy is implemented
at time 0. For the covariate distribution at time 0, FX,0 the policy meets the target τ̃ ,
that is, ATEFX,0 ≥ τ̃ . Now, we may worry that over time, the covariate distribution
might change from F0 in such a way that does not justify the policy any longer.

How does the covariate shift assumption translate in thus context? It requires that
the causal effect τFX,0(·) = τFX,t(·) for all t = 1, 2, · · · , T . That is, the CATE for
whichever time horizon it is defined, does not change for new cohorts who are newly
treated.

Here, a natural benchmark for comparison is given by the change between the refer-
ence point and the pre-policy period t = −1. This benchmark is given by δbenchmark =
DKL(FX,−1||FX,0). In this case, if one finds δ∗(τ) > δbenchmark then the policy-maker may
be comforted by observing that the amount of variation needed to invalidate the claim
is larger than the natural variation that can be elicited from the time trends. Of course,
one could decide to formalize this notion since we could seek to jointly characterize the
asymptotic distribution of the vector of estimators (δ̂∗(τ̃), δ̂benchmark)T which is beyond
the scope of this paper.

F An interpretation of the robustness metric based
on Sanov’s theorem

In this section, I discuss some further details on the interpretation of δ∗(τ) based on
Sanov’s theorem the I have introduced in Section F. The treatment in this section will
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be restricted to a covariate space X that is supported on finitely many points, reflecting
the discussion of the method of types in Cover [1999]. Suppose there are k covariates,
X1, · · · , Xk, each taking values in Xj with |Xj| finite. Let m := ∑k

j=1 |Xj|. The set of
probability distributions on X = Πk

j=1Xj can be identified with the (D− 1)-dimensional
simplex in Rm. For a fixed sample size n consider the set of all sequences of data
x = (x1, x2, · · · , xn) taking values in X n and define the type Px of a sequence x as the
relative proportion of each possible realization a in X , that is, Px(a) = N(a|x)

n
where

N(a|x) is the number of times realization a shows up is in sequence x. Let Pn be the
collection of types. Cover [1999] version of Sanov theorem allows for a more general set
E, not necessarily convex at the price of an additional multiplicative polynomial term
(n+ 1)m in the number of observation. If the set E is a convex set, the upper bound can
be tightened to P n(E ∩ Pn) ≤ e−nDKL(P ∗||P ) and the polynomial term in n is dropped.
Note that E := {Q :

∫
X τ(x)dQ ≤ τ̃} is obtained through imposing a linear restriction

on Q and therefore E is convex. Sanov’s theorem remains true for larger classes of
probability distributions, not necessarily confined to finitely supported X like discussed
in Csiszár [1984] but the method of types leans itself for a discussion on discrete spaces.

G Some additional results
Proposition 21. Let ϵ > 0. Then for τ̃ > infX τ(x) + ϵ, δ∗(τ̃) in Definition 3 is
decreasing in τ̃ .

Proof. First denote the feasible set E(τ̃) := {FX ∈ F :
∫

X τ(x)dFX(x) ≤ τ̃}. Then,
GX ∈ E(τ̃) ⇐⇒

∫
X τ(x)dFX(x) ≤ τ̃ < τ̃ ′ for any τ̃ ′ > τ̃ so GX ∈ E(τ̃ ′). But

then E(τ̃) ⊆ E(τ̃ ′). Hence, because we are minimizing on a larger set of distributions
δ∗(τ̃) := infGX∈E(τ̃) DKL(GX ||FX) ≥ infGX∈E(τ̃ ′) DKL(GX ||FX) =: δ∗(τ̃ ′). If the feasible
set E has the reverse inequality, it follows immediately that δ∗(τ) is increasing in τ̃ .

H General φ-divergence metrics and least favorable
closed classes.

In this section I extend the theory of least favorable classes by considering different
φ divergence measures. To this end I leverage the thorough treatment of φ divergences
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in Christensen and Connault [2019]. The Kullback-Leibler divergence is a special case
of a more general construction, known as φ-divergence. It is introduced below:

Definition 22 (φ-divergence). Consider the φ-divergence between FX and F ′
X given by:

Dφ(F ′
X ||FX) :=

∫
φ

(
dF ′

X

dFX

)
dFX (A.19)

where φ is a convex function with φ(1) = 0 and dF ′
X

dFX
is the Radon-Nikodym derivative of

the probability distribution F ′
X with respect to the probability distribution of FX , provided

that P ′
X ≪ PX for the respective measures. For example the choices φ(t) = t log t and

φ(t) = 1
2 |t− 1| give rise to the KL-divergence and to the total variation divergence (TV)

respectively.

There may be a reason to choose a different φ-divergence metric instead of the
KL-divergence. Under suitable conditions, the construction of the proposed robustness
metric will change in magnitude, since now the (pseudo)-metric on the space of distri-
butions of the covariates is different. A closed form solution analogous to Lemma 7 is
available. The characterization of the δ∗ now depends on φ(·). In particular it is fully
characterized in terms of the Fenchel-conjugate of φ and its derivative.

Definition 23 (Fenchel-Conjugate). Given a topological vector space X and convex
function φ : X → R, the Fenchel-conjugate φ∗ : X∗ → R, defined on the dual space of
X, is defined by:

φ∗ : x∗ 7→ sup
x∈X

⟨x∗, x⟩ − φ(x) (A.20)

Then we can have a generalization of the policy-maker’s problem in Equations (4)
and (5) for an arbitrary φ divergence in 22:

inf
P ′
X : P ′

X≪PX ;P ′
X(X )=1

Dφ(F ′
X ||FX) (A.21)

s.t.
∫

X
τ(x)dF ′

X(x) ≤ τ̃ (A.22)
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From the KKT Theorem (Theorem 1, Ch.8, Sec. 3 in Luenberger [1997]) we can write
the problem as:

sup
λ∈Λ

sup
ξ

(
inf

P ′
X : P ′

X≪PX ;P ′
X(X )=1

Dφ(F ′
X ||FX) + λ

∫
X

(τ(x) − τ̃)dF ′
X(x) + ξ

(∫
X
dF ′

X − 1
))

(A.23)

where and ξ is the Lagrange multiplier for integration to unity, λ is the Lagrange mul-
tiplier for the policy-maker’s claim. The convexity conditions for Theorem 1, Ch.8, Sec.
3 in Luenberger [1997] are immediate to verify. The interior condition, analogous to a
Slater condition, is satisfied by Assumption 4. Note that convex cone where the Lagrange
multiplier takes values is R+ (or R− if the policy-maker’s claim is ATE ≤ τ̃ instead). In
Equation (9) the Lagrange multiplier λ is a 1-dimensional parameter. Notice that after
fixing the experimental distribution, DKL(·||FX) is convex in its first argument. With a
careful rewriting we can express the inner problem as:

inf
P ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

(
φ

(
dF ′

X

dFX
(x)
)

− (−λ(τ(x) − τ̃) − ξ) dF
′
X

dFX
(x)
)
dFX(x) − ξ

and recognize that, if we can pass the infimum under the integral sign, we can substitute
the expression for the Fenchel-conjugate of φ, switching the sign of the infimum.

inf
P ′
X : P ′

X≪PX ;P ′
X(X )=1

∫
X

(
φ

(
dF ′

X

dFX
(x)
)

− (−λ(τ(x) − τ̃) − ξ) dF
′
X

dFX
(x)
)
dFX(x) − ξ

= −
∫

X
φ∗(−λ(τ(x) − τ̃) − ξ)dFX(x) − ξ

Substituting this back into the outside problem one obtains:

sup
λ∈Λ

sup
ξ

∫
X

−φ∗(−λ(τ(x) − τ̃) − ξ))dFX(x) − ξ

which can be maximized with respect to ξ and delivers the first order condition, evaluated
at ξ∗:

∫
X
φ̇∗(−λ(τ(x) − τ̃) − ξ∗)dFX = 1 (A.24)
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where φ̇∗(·) is the derivative of φ∗(·) with respect to its argument. Observe that the
Fenchel-conjugate of φ(t) = t log(t) is given by φ(t∗) = exp(t∗ − 1). Solving for ξ∗ here
delivers:

ξ∗ = log
(∫

X
exp(−λ(τ(x) − τ̃ − 1))dFX(x)

)

Now differentiating with respect to λ we obtain

∫
X
φ̇∗(−λ∗(τ(x) − τ̃) − ξ∗)(τ(x) − τ̃ + ξ̇∗

λ)dFX(x) − ξ̇∗
λ = 0 (A.25)

where ξ̇∗
λ is the derivative of ξ∗ with respect to λ and λ∗ is the value that implicitely

solves the moment condition in Equation (A.25). Observe that plugging Equation (A.24)
into Equation (A.25) allows to simplify it to:

∫
X
φ̇∗(−λ∗(τ(x) − τ̃) − ξ∗)(τ(x) − τ̃)dFX = 0

since the two terms in ξ̇∗
λ cancel out. Moreover, if φ(·) is the KL divergence like in the

main body of the paper, then

∫
X
φ̇∗(−λ∗(τ(x) − τ̃)(τ(x) − τ̃)dFX · exp(−ξ∗) = 0

so the additional term exp(−ξ∗) > 0 can be dropped and Equation (A.25) recovers
Equation (9).

I Proofs

First I introduce a few basic results for optimization problems like the one in Equa-
tions (4-5). Consider the set of probability distributions on X , PX := {PX :

∫
X dPX = 1}.

Under the L1 norm, PX is a complete metric space and it is convex. Namely, if
P1, P2 ∈ PX then Pα = αP1 + (1 − α)P2 ∈ PX is a mixture distribution. Moreover,
if there is a dominating measure µ such that f1 = dP1

dµ
and f2 = dP2

dµ
are the Radon-

Nikodym derivatives then dPα
dµ

= αf1 + (1 − α)f2. Now consider the constraint given in
Equation (5). For any two P1 and P2 that satisfy the constraint, Pα for any α ∈ [0, 1]
will satisfy it as well. Hence the constraint set given by Equation (5) is a convex subset
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of PX . If such a set is non-empty, then, because DKL(·||FX) is a strictly convex function
on a convex set, the infimization problem in Equation (4) has a unique solution (PX-
almost everywhere) and the infimum is achieved. Lemma 7 characterizes such a solution
PX-almost everywhere.

I.1 Proof of Lemma 7

The proof is based on a result that appeared first in Donsker and Varadhan [1975].
More recently Ho [2020] has used a similar argument to characterize global sensitivity
in a Bayesian setting.

Lemma 7 (Closed form solution). Let Assumptions 1, 2, 3 and 4 hold. Then: i)
The infimum in Equation (4) is achieved. Moreover F ∗

X , is characterized, PX-almost
everywhere, by:

dF ∗
X

dFX
(x) = exp(−λ(τ(x) − τ̃))∫

X exp(−λ(τ(x) − τ̃))dFX(x) (8)

where dF ∗
X

dFX
is the Radon-Nikodym derivative of dF ∗

X with respect to dFX and λ is the
Lagrange multiplier implicitly defined by the equation:

∫
X

exp(−λ(τ(x) − τ̃))(τ(x) − τ̃)dFX(x) = 0 (9)

ii) The value of the robustness metric δ∗(τ̃) is given by:

δ∗(τ̃) = DKL(F ∗
X ||FX) = − log

(∫
X

exp(−λ(τ(x) − τ̃))dFX(x)
)

(10)

First note that, by the Radon-Nikodym theorem, dF ∗
X

dFX
exists and supp

(
dF ′
X

dFX

)
⊂ X .

Recall τ(x) = E[Y1|X = x] − E[Y0|X = x]. Then:

inf
F ′
X : P ′

X≪PX ;P ′
X(X )=1

DKL(F ′
X ||FX)

s.t.
∫

X
τ(x)dF ′

X(x) = τ̃
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is equivalent to:

inf
F ′
X : P ′

X≪PX
DKL(F ′

X ||FX)

s.t.
∫

X
τ(x)dF

′
X

dFX
dFX(x) = τ̃

P ′
X(X ) = 1

I adapt a lemma from Donsker and Varadhan [1975]:

Lemma 24. Let F ∗
X satisfy dF ∗

X

FX
= exp(−λ(τ(x)−τ̃))∫

X exp(−λ(τ(x)−τ̃))dFX
. For any probability measure F̃X

such that F̃X ≪ FX we have:

log
(∫

X
exp(−λ(τ(x) − τ̃))dFX

)
= −

[∫
X
λ(τ(x) − τ̃)dF̃X(x) +DKL(F̃X ||FX)

]
+DKL(F̃X ||F ∗

X)

Proof. First by definition of the KL-divergence we have:

DKL(F̃X ||F ∗
X) =

∫
X

log
(
dF̃X
dF ∗

X

)
dF̃X

=
∫

X
log

 dF̃X
dFX
dF ∗
X

dFX

 dF̃X
=
∫

X

(
log

(
dF̃X
dFX

)
− log

(
dF ∗

X

dFX

))
dF̃X

=
∫

X
log

(
dF̃X
dFX

)
dF̃X −

∫
X

log
(

exp(−λ(τ(x) − τ̃)∫
X exp(−λ(τ(x) − τ̃)dFX

)
dF̃X

= DKL(F̃X ||FX) +
∫

X
λ(τ(x) − τ̃)dF̃X

+
∫

X
log

(∫
X

exp(−λ(τ(x) − τ̃))dFX
)
dF̃X

= DKL(F̃X ||FX) +
∫

X
λ(τ(x) − τ̃)dF̃X + log

(∫
X

exp(−λ(τ(x) − τ̃))dFX
)

since F̃X ≪ F ∗
X ≪ FX and simple algebra. Rearranging we get:

log
(∫

X
exp(−λ(τ(x) − τ̃)dFX

)
= DKL(F̃X ||F ∗

X)−
[∫

X
λ(τ(x) − τ̃)dF̃X +DKL(F̃X ||FX)

]
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Proof. i) From the lemma above we have:

log
(∫

X
exp(−λ(τ(x) − τ̃))dFX

)
= DKL(F̃X ||F ∗

X) −DKL(F̃X ||FX) −
∫

X
λ(τ(x) − τ̃)dF̃X

Now observe that, since the term log (
∫

X exp(−λ(τ(x) − τ̃)dFX) does not depend on F̃X
we must have:

arg min
F̃X≪FX

DKL(F̃X ||F ∗
X) = arg max

F̃X≪FX

−
∫
X
λ(τ(x) − τ̃)dF̃X −DKL(F̃X ||FX)

= arg min
F̃X≪FX

∫
X
λ(τ(x) − τ̃)dF̃X +DKL(F̃X ||FX)

but clearly F ∗
X = arg minF̃X≪FX

DKL(F̃X ||F ∗
X) so we must have

F ∗
X = arg min

F̃X≪FX

DKL(F̃X ||FX) + λ
∫
X

(τ(x) − τ̃)dF̃X

which is the desired result. ii) Observe that DKL(F ∗
X ||F ∗

X) = 0 hence the value of the
minimization problem:

min
F̃X≪FX

DKL(F̃X ||FX) + λ
∫
X

(τ(x) − τ̃)dF̃X

= min
F̃X≪FX

DKL(F̃X ||F ∗
X) − log

(∫
X

exp(−λ(τ(x) − τ̃))dFX
)

= − log
(∫

X
exp(−λ(τ(x) − τ̃))dFX

)

I.2 Proof of Fact 9

Proof. First, in this setting F ∗
X ≪ FX simply implies p1 = 0 =⇒ p∗

1 = 0. Excluding
such a trivial case, 12 characterizes p∗

1
p1

. First we solve for the Lagrange multiplier λ in
12 by noting that:

τ̃ =
∫

X
τ(x)dF ∗

X

= exp(−λ(τ(1) − τ̃))τ(1)p1 + exp(−λ(τ(0) − τ̃))τ(0)(1 − p1)
exp(−λ(τ(1) − τ̃))p1 + exp(−λ(τ(0) − τ̃))(1 − p1)

61



rearranging the denominator and since τ̃ is a constant, we obtain

exp(−λ(τ(1) − τ̃))τ(1)p1 + exp(−λ(τ(0) − τ̃))τ(0)(1 − p1)
= exp(−λ(τ(1) − τ̃))τ̃ p1 + exp(−λ(τ(0) − τ̃))τ̃(1 − p1)

which gives the condition:

exp(−λ(τ(1) − τ̃))(τ(1) − τ̃)p1 + exp(−λ(τ(0) − τ̃))(τ(0) − τ̃)(1 − p1) = 0

And isolating each side and taking logs we obtain:

−λ(τ(1) − τ(0)) = log
(

(τ̃ − τ(0))(1 − p1)
(τ(1) − τ̃)p1

)

so that

−λ = 1
(τ(1) − τ(0)) log

(
(τ̃ − τ(0))(1 − p1)

(τ(1) − τ̃)p1

)

Finally, replacing −λ in 11 we have:

p∗
1
p1

=
exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1 + exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(0)−τ̃
τ(1)−τ(0)

)
(1 − p1)
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Finally rearranging and combining terms we have:

p∗
1 =

exp
(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1

exp
(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(1)−τ̃
τ(1)−τ(0)

)
p1 + exp

(
log

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)
τ(0)−τ̃
τ(1)−τ(0)

)
(1 − p1)

=

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

) τ(1)−τ̃
τ(1)−τ(0) p1(

(τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

) τ(1)−τ̃
τ(1)−τ(0) p1 +

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

) τ(0)−τ̃
τ(1)−τ(0) (1 − p1)

= 1

1 +
(

(τ̃−τ(0))(1−p1)
(τ(1)−τ̃)p1

) τ(0)−τ̃
τ(1)−τ(0) − τ(1)−τ̃

τ(1)−τ(0) (1−p1)
p1

= 1
1 +

(
(τ̃−τ(0))(1−p1)

(τ(1)−τ̃)p1

)−1 (1−p1)
p1

= 1
1 + τ̃−τ(0)

τ(1)−τ(0)

= 1
τ(1)−τ(0)
τ̃−τ(0)

= τ̃ − τ(0)
τ(1) − τ(0)

which, with τ̃ = 0, is the solution obtained in Equation (11).

I.3 Proof of Proposition 10

Proposition 10 (Local to boundary τ̃). Let Assumptions 1-3 hold and let τ̃m → τ̃b ∈
∂L(PX). Assume that the pre-image τ−1(τ̃b) = Xb = {xb} ∈ X o is a singleton. Further,
let X be compactly supported, with density f(x) < M on X . Then the sequence of least
favorable distributions for the policy-maker’s problem with parameter τ̃m, denoted F ∗

X,m,
converges weakly to δxb, the Dirac delta distribution with point mass at xb, that is:

lim
m→∞

∫
X
g(x)dF ∗

X,m(x) →
∫

X
g(x)δxb := g(xb)

for g ∈ Cb(X ), the space of all continuous, bounded functions on X .

Proof. First observe that by Lemma 7 and the fact that each τm ∈ Lo(PX) we can
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construct the sequence of least favorable distributions F ∗
m,X satisfying:

dF ∗
m,X

dFX
(x) = exp(−λm(τ(x) − τ̃m))∫

X exp(−λm(τ(x) − τ̃m))dFX
λm :

∫
X

exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX = 0

Without loss of generality consider the case where τ̃b = maxX τ(x). First notice that
the sequence of λm defined above is decreasing and unbounded below. To see that it’s
decreasing observe that implicitly differentiating λ(τ̃):

∂

∂τ̃

∫
X

exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX(x)

= −∂λ

∂τ̃
(τ̃)

∫
X

exp(−λ(τ̃)(τ(x) − τ̃))(τ(x) − τ̃)2dFX

+ λ(τ̃)
∫

X
exp(−λ(τ̃)(τ(x) − τ̃))(τ(x) − τ̃)dFX

−
∫

X
exp(−λ(τ̃)(τ(x) − τ̃))dFX = 0

by the Dominated Convergence Theorem with envelope g = exp(2M) · 2M . Note that
by the definition of λ(τ̃) the second term is equal to 0. Isolating the derivative of λ with
respect to τ̃ we have:

∂λ

∂τ̃
(τ̃) = −

∫
X exp(−λ(τ̃)(τ(x) − τ̃))dFX∫

X exp(−λ(τ̃)(τ(x) − τ̃))(τ(x) − τ̃)2dFX
< 0

so λ(τ̃) is strictly decreasing on its domain. Suppose λm ≥ −B for all m ∈ N , with
B > 0. Then:

∫
X

exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX ≤
∫

X
exp(B(τ(x) − τ̃m))(τ(x) − τ̃m)dFX
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so taking the limit fro m → ∞, if PX(τ(x) ̸= τ̃b) > 0:

lim
m→∞

∫
X

exp(−λm(τ(x) − τ̃m))(τ(x) − τ̃m)dFX

≤ lim
m→∞

∫
X

exp(B(τ(x) − τ̃m))(τ(x) − τ̃m)dFX(x)

≤
∫

X
exp(B(τ(x) − τ̃b))(τ(x) − τ̃b)dFX(x) < 0

Then, there exist m∗ ∈ N such that
∫

X exp(λm∗(τ(x) − τ̃m∗))(τ(x) − τ̃m∗)dFX < 0 which
is a contradiction. So λm must be unbounded below. Because it’s a strictly decreasing,
unbounded below sequence, it must be the case that λm → −∞ as τ̃m → τ̃b. Now we
show convergence in distribution to δxb . Let φ(·) ∈ Cb. We want to show:

lim
m→∞

∫
X
φ(x)dF ∗

X,m(x) →
∫

X
φ(x)δxb(x) = φ(xb)

We have:

∫
X
φ(x)dF ∗

X,m(x) =
∫

X
φ(x) exp(−λm(τ(x) − τ̃b))dFX(x)∫

X exp(−λm(τ(x) − τ̃b))dFX(x)

=
∫

X
φ(x) exp(−λm(τ(x) − τ̃b))dFX(x)∫

X exp(−λm(τ(x) − τ̃b))dFX(x)

Noticing that λm < 0. Consider the change of variables y =
√

−λm(xb − x). Then
x = xb − y√

−λm
, dx = − dy√

−λm
. By the change of variable formula:

∫
X
φ(x) exp(−λm(τ(x) − τ̃b))f(x)dx∫

X exp(−λm(τ(x) − τ̃b))f(x)dx

=
∫
Rk φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ
(
xb − y√

−λm

)
− τ(xb)

))
f
(
xb − y√

−λm

)
1Y(λm)(y) 1√

−λm
dy∫

Rk exp
(
−λm

(
τ
(
xb − y√

−λm

)
− τ(xb)

))
f
(
xb − y√

−λm

)
1Y(λm)(y) 1√

−λm
dy

=
∫
Rk φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ
(
xb − y√

−λm

)
− τ(xb)

))
f
(
xb − y√

−λm

)
1Y(λm)(y)dy∫

Rk exp
(
−λm

(
τ
(
xb − y√

−λm

)
− τ(xb)

))
f
(
xb − y√

−λm

)
1Y(λm)(y)dy

Note that, if X is compactly supported then f(x) = 0 outside of a compact set K ⊆ Rk
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hence. Moreover, if f(x) < M we have the dominating function given by:

φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))
f

(
xb − y√

−λm

)
1Y(λm)(y)dy

≤ ∥φ∥∞M1K(y)

on Rk and
∫
Rk∥φ∥∞M1K(x)dx = ∥φ∥∞ · M · vol(K) < +∞. hence the assumptions of

the Dominated Convergence theorem hold. Then we have:

= lim
m→∞

∫
Rk
φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))

× f

(
xb − y√

−λm

)
1Y(λm)(y)dy

=
∫
Rk

lim
m→∞

φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))

× f

(
xb − y√

−λm

)
1Y(λm)(y)dy

Now consider Taylor expanding τ(·) around xb. Because xb is a maximizer, the Jacobian
Jτ (xb) : Rk → R is the zero matrix, from first order conditions. Hence:

exp
(

−λm
(
τ

(
xb − y√

−λm

)
− τ(xb)

))

= exp
(

−λm
(
τ(xb) − Jτ (xb)

(
y√

−λm

)
+ 1

2 · 1
−λm

yTHτ (xb)y − τ(xb)
))

= exp
(1

2y
THτ (xb)y + o(1)

)

where Hτ (xb) is the k×k Hessian matrix of τ , evaluated at the maximizer xb. Moreover:

∫
Rk

lim
m→∞

φ

(
xb − y√

−λm

)
exp

(
−λm

(
τ

(
xb − y√

−λm

)
− τ(xb)

))
f

(
xb − y√

−λm

)
1Y(λm)(y)dy

=
∫
Rk
φ(xb) exp

(1
2y

TH(xb)y
)
f(xb)dy

= φ(xb)
∫
Rk

exp
(1

2y
TH(xb)y

)
f(xb)dy
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Now the denominator can be treated identically to have:

∫
Rk

lim
m→∞

exp
(

−λm
(
τ

(
xb − y√

−λm

)
− τ(xb)

))
f

(
xb − y√

−λm

)
1Y(λm)(y)dy

=
∫
Rk

exp
(1

2y
TH(xb)y

)
f(xb)dy

Now because xb is a maximizer, H(xb) is negative definite so the quantities above are
finite and the numerator is greater than 0. Finally:

lim
m→∞

∫
X
φ(x)dF ∗

X,m(x)

= lim
m→∞

∫
X φ(x) exp(−λm(τ(x) − τ̃b))f(x)dx∫

X exp(−λm(τ(x) − τ̃b))f(x)dx

= limm→∞
∫

X φ(x) exp(−λm(τ(x) − τ̃b))f(x)dx
limm→∞

∫
X exp(−λm(τ(x) − τ̃b))f(x)dx

=
φ(xb)

∫
Rk exp

(
1
2y

TH(xb)y
)
f(xb)dy∫

Rk exp
(

1
2y

TH(xb)y
)
f(xb)dy

= φ(xb)

Since φ(·) ∈ Cb was arbitrary, by the Portmanteau theorem, dF ∗
X,m

d→ δxb .

In the general case where Xb is not a singleton, it seems that the least favorable
distribution still concentrates around the uniform distribution on the Xb, rather than
any distribution like the figure below suggests. I leave this interesting case for future
work.
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Figure 7: Here τ(x) is quadratic, experimental distribution is uniform and there are two
peaks. It appears that the least favorable distribution concentrates around both peaks.

I.4 Proof of Proposition 19

Proposition 19 (Quadratic-Normal least favorable closed-ness). The parametric class
N (µ, σ2) is least favorable closed for quadratic Conditional Average Treatment Ef-
fects. That is, if X ∈ Rk follows the multivariate normal distribution X ∼ N (µµµ,ΣΣΣ)
where ΣΣΣ is p.d. and τ(x) = xTAxxTAxxTAx+xTβxTβxTβ + c for βββ ∈ Rk then F ∗

X is the measure induced
by X∗ ∼ N (µ∗µ∗µ∗,Σ∗Σ∗Σ∗) with µµµ∗ = (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ − λβββ) and Σ∗Σ∗Σ∗ = (ΣΣΣ−1 + 2λAAA)−1,
provided that (ΣΣΣ−1 + 2λAAA)−1 is p.d. The parameter λ is defined as in Equation (9).

Proof. Suppose X = Rk, X ∼ N (µµµ,σσσ) and τ(x) = xTAxxTAxxTAx + xTβxTβxTβ + c. By Lemma 7 the
Radon-Nikodym derivative of the least favorable distribution is given by Equation (8)
so the distribution of F ∗

X must have density:
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dµ∗
X :=

exp(−λ(τ(x) − τ̃)) exp(− 1
2 (xxx−µµµ)T ΣΣΣ−1(xxx−µµµ))√

(2π)k det(ΣΣΣ)
dx∫

X
exp(−λ(τ(x) − τ̃))

exp
(
− 1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ)
)√

(2π)k det(ΣΣΣ)
dx

=
exp(−λ(xxxTAxAxAx+ xxxTβββ + c− τ̃)) exp(− 1

2 (xxx−µµµ)T ΣΣΣ−1(xxx−µµµ))√
(2π)k det(ΣΣΣ)

dx∫
X

exp(−λ(xxxTAxAxAx+ xxxTβββ + c− τ̃))
exp

(
− 1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ)
)√

(2π)k det(ΣΣΣ)
dx

=

exp(−λ(xxxT AxAxAx+xxxT βββ+c−τ̃)− 1
2 (xxx−µµµ)T ΣΣΣ−1(xxx−µµµ))√

(2π)k det(ΣΣΣ)
dx∫

X

exp(−λ(xxxTAxAxAx+ xxxTβββ + c− τ̃) − 1
2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))√

(2π)k det(ΣΣΣ)
dx

=
exp(−λ(xxxTAxAxAx+ xxxTβββ + c− τ̃) − 1

2 (xxx−µµµ)TΣΣΣ−1(xxx−µµµ))dx∫
X

exp(−λ(xxxTAxAxAx+ xxxTβββ + c− τ̃) − 1
2(xxx−µµµ)TΣΣΣ−1(xxx−µµµ))dx

=
exp(− 1

2 (xxx− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))(ΣΣΣ−1 + 2λAAA))(x− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))dx∫
X

exp(−1
2(x− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))(ΣΣΣ−1 + 2λAAA))(x− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))dx

×
exp(λc+ λτ̃ − 1

2µµµ
TΣΣΣ−1µµµ− 1

2 (ΣΣΣ−1µµµ− λβββ)(ΣΣΣ−1 + 2λβββ)−1(ΣΣΣ−1µµµ− λβββ))
exp(λc+ λτ̃ − 1

2µµµ
TΣΣΣ−1µµµ− 1

2 (ΣΣΣ−1µµµ− λβββ)(ΣΣΣ−1 + 2λβββ)−1(ΣΣΣ−1µµµ− λβββ))

=
exp(− 1

2 (xxx− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µ− λβββ))(ΣΣΣ−1 + 2λAAA))(x− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))dx∫
X

exp(−1
2(xxx− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))(ΣΣΣ−1 + 2λAAA))(xxx− (ΣΣΣ−1 + 2λAAA)−1(ΣΣΣ−1µµµ− λβββ))dx

from which we can recognize the form of the normal distribution with mean µµµ∗ and
variance covariance matrix ΣΣΣ∗. The steps above follow from completing the square and
from the properties of exp(·).

I.5 Proof of Proposition 13

Proposition 13. The de-biased GMM nonparametric influence function based on mo-
ment function g(·) is:

ϕ(w, θ, γ0, α0) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×
(
d(y − γ1,F0(x))

πF0(x) − (1 − d)(y − γ0,F0(x))
1 − πF0(x)

)
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which could be written in the form:

ϕ(w, θ, γ0, α0) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×


α1,F0(x)
α0,F0(x)

T  d(y − γ1,F0(x))
(1 − d)(y − γ0,F0(x))




with αF0(x) :=
α1,F0(x)
α0,F0(x)

 =
 1

πF0 (x)
1

1−πF0 (x)

.

Proof. Let Fr = (1−r)F0+rH for an arbitrary distributionH that satisfies unconfounded-
ness. Then Fr is a distribution because it’s a convex combination of two distributions,
and it satisfies unconfounded-ness. Therefore we can refer to the identification results:

EFr [Y1|X] = EFr [Y |D = 1, X]
EFr [Y0|X] = EFr [Y |D = 0, X]

and derive the distributional derivative of EFr [Y |D = 1, X] − EFr [Y |D = 0, X] with
respect to r and evaluate it at r = 0. Alternatively one may start with the propensity
score weighting identification result below:

EFr

 Y ·D
πFr(X) − Y · (1 −D)

πFr(X)

∣∣∣∣∣∣X
 = EFr [Y1 − Y0|X]

and proceed as above to derive the distributional derivative of EF [g(W, θ, γ(Fr))]. The
second approach is more cumbersome so we present the proof for the regression adjust-
ment method but note that both would be valid approaches to find the nonparametric
influence function. Computing the derivative of the moment condition with respect to
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r and evaluating it at r = 0 we have:

dE[g(W, θ, γ(Fr))]
dr

∣∣∣∣∣
r=0

= d

dr
E

[
exp(−λ0(γ1,Fr

(x) − γ0,Fr
(x) − τ̃)) − ν]

exp (−λ0(γ1,Fr (x) − γ0,Fr (x) − τ̃)) (γ1,Fr (x) − γ0,Fr (x) − τ̃)]

] ∣∣∣∣∣
r=0

=
∫

X

d

dr

[
exp (−λ0 · (γ1,Fr (x) − γ0,Fr (x) − τ̃))

exp (−λ0 · (γ1,Fr
(x) − γ0,Fr

(x) − τ̃)) (γ1,Fr
(x) − γ0,Fr

(x) − τ̃)

]
f0(x)dx

∣∣∣∣∣
r=0

=
∫

X

[
exp (−λ0 · (γ1,Fr

(x) − γ0,Fr
(x) − τ̃)) · (−λ0)

exp (−λ0 · (γ1,Fr
(x) − γ0,Fr

(x) − τ̃)) · (1 − λ · (γ1,Fr
(x) − γ0,Fr

(x) − τ̃))

]

× ∂

∂r
(γ1,Fr (x) − γ0,Fr (x))f0(x)dx

In order to characterize the contribution of the functional we have:
∂

∂r
(γ1,Fr

(x) − γ0,Fr
(x))

= ∂

∂r

∫
Y

y∫
Y(1 − r)dF0(y, 1, x) + rdH(y, 1, x) ((1 − r)dF (y, 1, x) + rdH(y, 1, x))

− ∂

∂r

∫
Y

y∫
Y(1 − r)dF0(y, 0, x) + rdH(y, 0, x) ((1 − r)dF (y, 0, x) + rdH(y, 0, x))

=
∫

Y y · [dH(y, 1, x) − dF0(y, 1, x)]
∫

Y(1 − r)dF0(y, 1, x) + rdH(y, 1, x)(∫
Y(1 + r)dF0(y, 1, x) + rdH(y, 1, x)

)2

−
∫

Y y[dH(y, 1, x) − dF0(y, 1, x)]((1 − r)dF0(y, 1, x) − dH(y, 1, x))(∫
Y(1 + r)dF0(y, 1, x) + rdH(y, 1, x)

)2

−
∫

Y y · [dH(y, 0, x) − dF0(y, 0, x)]
∫

Y(1 − r)dF0(y, 0, x) + rdH(y, 0, x)(∫
Y(1 + r)dF0(y, 0, x) + rdH(y, 0, x)

)2

+
∫

Y y[dH(y, 0, x) − dF0(y, 0, x)]((1 − r)dF0(y, 0, x) − dH(y, 0, x))(∫
Y(1 + r)dF0(y, 0, x) + rdH(y, 0, x)

)2

Below f0(d, x) =
∫

Y dF0(y, d, x) and the same holds for h(·). Evaluating this expression
at r = 0 one obtains:
∫
y · dH(y, 1, x)

f0(1, x) −
∫
y · h(1, x) · dF0(y, 1, x)

f0(1, x)2 −
∫
y · dH(y, 0, x)

f0(0, x) +
∫
y · h(0, x) · dF0(y, 0, x)

f0(0, x)2

Combining this with the derivative of the moment condition with respect to the γ we
have:

dE[g(W, θ, γ(Fr))]
dr

=
∫

Y×{0,1}×X

[
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)

exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))

]

×
(
d(y − γ1,F0(x))

πF0(x) − (1 − d)(y − γ0,F0(x))
1 − πF0(x)

)
dH(y, d, x)
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or dE[g(W,θ,γ(Fr))]
dr

=
∫

Y×{0,1}×X ϕ(w, θ, γ(F0), α(F0))dH(w) for

ϕ(w, θ, γ, α) =
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×
(
d(y − γ1,F0(x))

πF (x) − (1 − d)(y − γ0,F0(x))
1 − πF (x)

)

=
 exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(x) − γ0,F0(x) − τ̃)) · (1 − λ · (γ1,F0(x) − γ0,F0(x) − τ̃))


×


α1,F0(x)
α0,F0(x)

T  d(y − γ1,F0(x))
(1 − d)(y − γ0,F0(x))




and αF0(X) :=
α1,F0(x)
α0,F0(x)

 =
 1

πF0 (X)
1

1−πF0 (X)

. Note that above ϕ(·) is the Riesz representer

of the linear functional dE[g(W,θ,γ(Fr))]
dr

∣∣∣∣∣∣
r=0

: H → R2 which maps H to R2.

Observe that EF0 [ϕ(W, θ, γ0(X), α0(X)] = 0 by the law of iterated expectations.

Moreover, for any distribution F , EF

D(Y−EF [Y |D=1,X])
πF (X) − (1−D)(Y−EF [Y |D=0,X]

1−πF (X)

∣∣∣∣∣∣X
 = 0.

I.6 Proof of Proposition 14

Proposition 14. Equation (16) satisfies Neyman orthogonality.

Proof. To show that they are Neyman orthogonal we verify the conditions for Theorem
1 in Chernozhukov et al. [2020] in the Appendix. Let γ1,F (X), γ0,0(X) denote EF [Y |D =
1, X],EF [Y |D = 0, X] respectively.
i) Equation (15) holds. This has been verified above.
ii)

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))Fr(dw) = 0 for all r ∈ [0, r̃):
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This is immediate by the law of iterated expectations

EFr [ϕ(W, γ(Fr), θ, α(Fr)]
= EFr [EFr [ϕ(W, γ(Fr), θ, α(Fr)|X]]

= EFr

v(X) · EFr

(d(y − γ1,Fr(X))
πFr(X) − (1 − d)(y − γ1,Fr(X))

1 − πFr(X)

) ∣∣∣∣∣∣X


= EFr [v(X) · 0]
= 0

for v(X) =
 exp (−λ · (γ1,Fr(x) − γ0,Fr(x) − τ̃)) · (−λ)
exp (−λ · (γ1,Fr(x) − γ0,Fr(x) − τ̃)) · (1 − λ · (γ1,Fr(x) − γ0,Fr(x) − τ̃))


iii)

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))H(dw) and

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))F0(dw) are

continuous at r = 0.
For a given H, we show that function b : r 7→

∫
Y0×Y1×X ϕ(w, γ(Fr), θ, α(Fr))H(dw) is con-

tinuous at r = 0. Take a sequence rm → r = 0, then ϕn(w) := ϕ(w, γ(Frm), θ, α(Frm))
converges H-almost everywhere to ϕ0(w) := ϕ(w, γ(F0), θ, α(F0)). Moreover we have
ϕm(w) ≤ F (w) for all m ∈ N with F ∈ L1(H). By the dominated convergence theorem
we have: b(rm) → b(0) which is the desired result.
An analogous argument applies to the integral with respect to F0. As a consequence of
Theorems 1,2 and 3 in Chernozhukov et al. [2020] ψ(w, γ, θ, α) is Neyman orthogonal.
We can also verify Neyman orthogonality directly from the form of the ψ̄ function. In
particular:

73



∂

∂r
E[ψ(W, θ, γFr

, αFr
)]
∣∣∣∣∣
r=0

= ∂

∂r
E[g(W, θ, γ) + ϕ(W, θ, γ, α)]

∣∣∣∣∣
r=0

= E

[
∂

∂r

[
exp (−λ0 · (γ1,Fr (X) − γ0,Fr (X) − τ̃))

exp (−λ0 · (γ1,Fr
(X) − γ0,Fr

(X) − τ̃)) (γ1,Fr
(X) − γ0,Fr

(X) − τ̃)

]

+ ∂

∂r

([
exp (−λ · (γ1,Fr (X) − γ0,Fr (X) − τ̃)) · (−λ)

exp (−λ · (γ1,Fr
(X) − γ0,Fr

(X) − τ̃)) · (1 − λ · (γ1,Fr
(X) − γ0,Fr

(X) − τ̃))

]

×
(
D(Y − γ1,Fr

(X))
πFr (X) − (1 −D)(Y − γ0,Fr

(X))
1 − πFr (X)

))]

= E

[[
exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (−λ)

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (1 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
∂γ1,Fr

(X)
∂r

− ∂γ0,Fr
(X)

∂r

)∣∣∣∣∣
r=0

−

[
exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (−λ)

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (1 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
D

πF0(X) · ∂γ1,Fr
(X)

∂r

∣∣∣∣∣
r=0

− (1 −D)
1 − πF0(X) · ∂γ0,Fr

(X)
∂r

∣∣∣∣∣
r=0

)

+
[

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (λ)2

exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (−λ) · (2 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
∂γ1,Fr (X)

∂r
− ∂γ0,Fr (X)

∂r

)∣∣∣∣∣
r=0

×
(
D(Y − γ1,F0(x))

πF0(X) − (1 −D)(Y − γ0,F0(X))
1 − πF0(X)

)]

+
[

exp (−λ · (γF0(X) − τ̃)) · (−λ)
exp (−λ · (γ1,F0(X) − γ0,F0(X) − τ̃)) · (1 − λ · (γ1,F0(X) − γ0,F0(X) − τ̃))

]

×

(
D(Y − γ1,F0(X)) · ∂

∂r

(
1

πFr
(X)

) ∣∣∣∣∣
r=0

− (1 −D)(Y − γ0,F0(X)) · ∂
∂r

(
1

1 − πFr
(X)

) ∣∣∣∣∣
r=0

)
= 0

The last equality follows by the law of iterated expectations. The first and second
term cancel out since E

[
D

πF0 (X)

∣∣∣∣X] = 1,E
[

1−D
1−πF0 (X)

∣∣∣∣X] = 1. The third term is 0 be-
cause the nonparametric influence function is centered at 0 conditional on X. Moreover,
E
[
D(Y − E[Y |D = 1, X]

∣∣∣∣X] = 0 and E
[
(1 −D)(Y − E[Y |D = 0, X]

∣∣∣∣X] = 0 so when-

ever ∂
∂r

(
1

πFr (X)

) ∣∣∣∣
r=0

and ∂
∂r

(
1

1−πFr (X)

) ∣∣∣∣
r=0

are integrable, the fourth term is also 0, since

they are measurable with respect to σ(X). So ∂
∂r
E[ψ(W, θ, γFr , αFr)]

∣∣∣∣
r=0

= 0. Observe
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that this result implies Neyman orthogonality with respect to the γ and α functions
separately as well. To show the Neyman orthogonality with respect to γ and to set up
the further results contained in Theorem 3 in Chernozhukov et al. [2020], we build the
following construction. Consider the linear space of square integrable functions of X
(with respect to some dominating measure), denoted as Γ = L2(X ). H is the closed set
of distributions which is a closed subset of the Banach space L1(Y0 × Y1 × X , µ) un-
der some appropriate dominating measure µ. Denote the Hadamard differential of the
conditional mean function at F0 as ∂γ(Fr)

∂r
: H → Γ. Denote the Hadamard differential

for ψ̄(γ(Fr), α0, θ) at F0 as ∂E[ψ(W,γ(Fr),α(Fr),θ)]
∂r

: H → R2. Finally denote the Hadamard
differential of ψ̄(γ, θ) with respect to γ as ∂ψ̄(γ,α,θ)

∂γ
: Γ → R2. Then the following diagram

commutes by Proposition 20.9 in Van der Vaart [2000].

Γ

H R2

∂ψ̄(γ,α0,θ)
∂γ

∂γ(Fr)
∂r

∂E[ψ(W,γ(Fr),α0,θ)]
∂r

By Neymann orthogonality with respect to the distribution Fr, ∂E[ψ(W,γ(Fr),α0,θ)]
∂r

≡ 0.
∂ψ̄(γ,θ)
∂γ

is onto Γ which satisfies Chernozhukov et al. [2020] Theorem 3 condition iv).
Then, by linearity of the Hadamard derivative and the commutativity of the above
diagram it must be the case that ∂ψ̄(W,γ,α0,θ)

∂γ
≡ 0. That is, the Hadamard derivative is

the 0 function from Γ → R2. Note that this is the case because ∂γ(Fr)
∂r

is onto L2(X ).
According to the above calculations we have, for δH := ∂γ1,Fr

∂r
− ∂γ0,Fr

∂r

∣∣∣∣
r=0

∈ L2(X ).

Then as specified above: ∂E[ψ̄(θ,α0,γ)]
∂γ

(δH) is a linear map from L2(X) → R2 in δH . In
particular it maps to 0 ∈ R2 for any δH(X), so it’s the 0 map. Hence we verified Neyman
orthogonality with respect to γ directly.

I.7 Proof of Theorem 15

Lemma 25. For ψ̄(θ, γ, α) = E[ψ(w, θ, γ, α)] we have:

i) ψ̄(γ, α0, θ0) is twice continuously Frechet differentiable in a neighborhood of γ0.
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ii) If Λ is bounded then ∀θ ∈ Θ, ψ̄(γ, α0, θ) ≤ C̄∥γ − γ0∥2
L2.

Proof. Endow the spaces Γ with the L2(X , µ) norm and R2 with the standard Euclidean
norm ∥·∥. We directly compute the directional derivative of ψ̄(θ, γ, α) with respect to γ.

∂

∂r
ψ̄(γ, θ, α0)

=E
[[ exp

(
−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)

)
· (λ)2

exp
(

−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)
)

· (−λ) · (2 − λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1 − γ0) − τ̃))

]
×
(
D(Y − (1 − r)γ1,0(X) − rγ1(X))

πF0 (X)
−

(1 − D)(Y − (1 − r)γ0,0(X) − rγ0(X))
1 − πF0 (X)

)
[(γ1 − γ1,0) − (γ0 − γ0,0)]

]

where we emphasized linearity in [(γ1 − γ1,0) − (γ0 − γ0,0)], the discrepancy between
the estimated CATE and the true one. The second order Frechet derivative, if it exists,
is a bi-linear operator given below, obtained by differentiating the first order Frechet
derivative with respect to r. Then:

∂

∂r

∂ψ̄(γ, θ, α0)
∂r

=E
[{[

exp(−λ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))(−λ)3

exp(−λ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))(−λ)2(3 − (1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))

]
×
(
D(Y − (1 − r)γ1,0(X) − rγ1(X))

πF0 (x)
−

(1 − D)(Y − (1 − r)γ0,0(X) − rγ0(X))
1 − πF0 (x)

)
×[(γ1 − γ1,0) − (γ0 − γ0,0); (γ1 − γ1,0) − (γ0 − γ0,0)]

+

[
exp
(

−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)
)

· (λ)2

exp
(

−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃)
)

· (−λ) · (2 − λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1 − γ0) − τ̃))

]
×[(γ1 − γ1,0) − (γ0 − γ0,0)]

(
D

πF0 (X)
[γ1(X) − γ1,0(X)] −

1 − D

1 − πF0 (X)
[γ0(X) − γ0,0(X)]

)}]
Evaluated at r = 0 the second order directional derivatives are:

E
[ exp (−λ · ((γ1,0(X) − γ0,0(X)) − τ̃)) · (λ)2

exp (−λ · (γ1,0(X) − γ0,0(X)) − τ̃)) · (−λ) · (2 − λ · ((γ1,0(X) − γ0,0(X)) − τ̃))


× [(γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X)); (γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X))]

}]

by the law of iterated expectations. We emphasized that the above expression, is bi-
linear 15 in (γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X). If the bi-linear map is continuous at
(γ1,0, γ0,0) with respect to the operator norm then ψ̄ is Frechet differentiable at (γ1,0, γ0,0)

15Denote the space of linear maps from Banach spaces X to Y as B(X,Y ). It is itself a Banach
space. Then one may identify B(L2(X )2, B(L2(X )2;R2)) with B(L2(X )2 × L2(X )2;R2). Then the
second order Frechet derivative is a bi-linear map from L2(X )2 × L2(X )2R2.
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and the directional derivative and the Frechet derivative coincide. A sufficient condition
is given by: ∥∥∥∥∥∥ ∂

2

∂r2 ψ̄(γ, θ, α0)
∥∥∥∥∥∥
L2

< ∞

which translates to∥∥∥∥∥∥
  exp (−λ · ((γ1,0(X) − γ0,0(X)) − τ̃)) · (λ)2

exp (−λ · (γ1,0(X) − γ0,0(X)) − τ̃)) · (−λ) · (2 − λ · ((γ1,0(X) − γ0,0(X)) − τ̃))


× [(γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X)); (γ1(X) − γ1,0(X)) − (γ0(X) − γ0,0(X))]


∥∥∥∥∥∥

L2

< ∞

Then Frechet differentiability follows from Holder’s inequality with p = q = 2. Under a
slightly stronger condition which holds uniformly over r ∈ [0, 1] one can obtain stronger
results. Then Theorem 3 ii) in Chernozhukov et al. [2020] can be applied and we have:

ψ̄(γ, α0, θ0) ≤ C∥γ1(X) − γ1,0(X) − (γ0(X) − γ0,0(X))∥2
L2 ≤ C

∥∥∥∥∥∥
γ1(X) − γ1,0(X)
γ0(X) − γ0,0(X)

 ∥∥∥∥∥∥
2

L2,E

where the E denotes the Euclidean norm on R2. More generally consider C(λ) defined
below:

C(λ) :=
∥∥∥∥∥ sup
r∈(0,1)


exp (−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))
exp (−λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1(X) − γ0(X)) − τ̃))


(λ)2 0

0 (−λ)(2 − λ · ((1 − r)(γ1,0(X) − γ0,0(X)) + r(γ1 − γ0) − τ̃))


∥∥∥∥∥
E

For a general bound here the constant depends on C(λ). If Λ is compact then we can
afford a representation of the theorem which is uniform across values for λ0 which gives
a much stronger version of the approximating function in λ and gets rid of some terms.
For C̄ = supλ∈Λ C(λ) then ψ(γ, θ, α0) ≤ C∥γ − γ0∥2

L2 and Frechet differentiability in a
neighborhood of λ0 follows in a straightforward way from the continuity of C(λ) and the
compactness of Λ.

Remark 26. Compactness of Λ would follow, for example, from Assumption 4 which
restricts λ to be finite. We note that a condition in the form of C̄ < ∞ is sufficient and
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does not require compactness of Λ.

Lemma 27 (
√
n - consistency). proposition Let Assumption 5 hold. Then

1√
n

K∑
k=1

∑
i∈Ik

g(Wi, θ, γ̂−k) + ϕ(Wi, θ̃−k, γ̂−k, α̂−k) = 1√
n

n∑
i=1

ψ(Wi, θ, γ0, α0) + oP (1)

Proof. The proof mirrors the blueprint of Theorem 15 in Chernozhukov et al. [2020].
We have:

g(Wi, θ0, γ̂−k) + ϕ(Wi, γ̂−k, θ̃−k, α̂−k) − ψ(Wi, γ0, θ0, α0)
= g(Wi, θ0, γ̂−k) − g(Wi, θ0, γ0)︸ ︷︷ ︸

R̂1i,−k

+ ϕ(Wi, θ0, γ̂−k, α0) − ϕ(Wi, θ0, γ0, α0)︸ ︷︷ ︸
R̂2i,−k

+ ϕ(Wi, θ̃−k, γ0, α̂−k) − ϕ(Wi, θ0, γ0, α0)︸ ︷︷ ︸
R̂3i,−k

+ ϕ(Wi, θ̃−k, γ̂−k, α̂−k) − ϕ(Wi, θ̃, γ0, α̂−k) + ϕ(Wi, γ̂−k, α0, θ0) − ϕ(Wi, γ0, α0, θ0)︸ ︷︷ ︸
∆̂i,−k

+ g(Wi, θ0, γ0) + ϕ(Wi, θ0, γ0, α0)
− ψ(Wi, θ0, γ0)
= R̂1i,−k + R̂i2,−k + R̂i3,−k + ∆̂i,−k

Conditioning on the set not used in the nonparametric estimation we have:

E[R̂1i,−k + R̂2i,−k|Ick] =
∫

X
(g(w, θ0, γ̂−k, α0) + ϕ(w, θ0, γ̂−k, α0))dF0(w)

=
∫

X
ψ(w, θ0, γ̂−k, α0)dF0(w)

= ψ̄(θ0, γ̂−k, α0)

The third term’s expected value, conditional on the subsample is given by E[R̂i3,−k|Ik] =∫
X ϕ(Wi, θ̃−k, γ0, α̂−k)dF0(w) = 0. Finally consider the term:

1√
n

∑
i∈Ic

R̂1i,−k + R̂i2,−k + R̂i3,−k − E[R̂1,−k + R̂2,−k|Ick] + E[R̂1,−k + R̂2,−k|Ick]
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Now by Kennedy et al. [2020] Lemma 2 we have:

1√
n

∑
i∈Ic

R̂1i,−k + R̂i2,−k − E[R̂1,−k + R̂2,−k|Ick] = OP (∥ψ(Wi, θ0, γ̂k, α0) − ψ(Wi, θ0, γ0, α0)∥2
L)

= OP (∥γ̂k − γ0∥2
L)

where the last equality follows form proposition 25 ii).

Again by Kennedy et al. [2020] Lemma 2

1√
n

∑
i∈Ik

R̂i3,−k − E[R̂i3,−k|Ik] = OP (∥ϕ(Wi, θ̃−k, γ0, α̂−k) − ϕ(Wi, θ0, γ0, α0)∥L2)

= OP (∥α̂− α0|2L) +OP (∥θ̃ − θ0∥R2)

since ϕ(·) is linear in α and differentiable in θ. Then Assumption 5 guarantees that these
last two terms are oP (1). Furthermore, by Proposition 25 ii) for n sufficiently large we
have:

E[R̂1,−k + R̂2,−k|Ik] ≤
√
nC∥γ̂k − γ0∥2

for C̄ given in proposition 25. A similar argument shows 1√
n

∑
i∈Ic

k
∆i,−k = oP (1). If

that’s the case, we conclude that:

1√
n

∑
i∈Ik

g(Wi, θ0, γ̂−k) + ϕ(Wi, θ̃k, γ̂k, α̂−k) = 1√
n

∑
i∈Ik

ψ(Wi, γ0, θ0, α̂0) + oP (1)

Lemma 28 (Jacobian consistency). For Jacobian G of the debiased moment conditions:

G = E[Dψ(w, θ0, γ0, α0)] = E
[
∂

∂θ
ψ(w, θ0, γ0, α0)

]
(A.26)

and θ̂ p→ θ0 we have ∥∂ψ̂(θ̂)
∂θ

−G∥ = oP (1).
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Proof. First observe that at γ = γ0 and α = α0:

E
[
∂

∂θ
ψ(w, θ, γ, α)

]
= E

[
∂

∂θ
g(w, θ, γ, α)

]
+ E

[
∂

∂θ
ϕ(w, θ, γ, α)

]

= E
[
∂

∂θ
g(w, θ, γ)

]
+ 0

= E
[
∂

∂θ
g(w, θ, γ)

]

by the law of iterated expectations. (N.B: if α0 is the propensity score than this holds
in a neighborhood of the true F0). Now, to show the result we verify the conditions
in Lemma 17 of Chernozhukov et al. [2020]. First notice that for ∂g(w,θ,γ)

∂θ
, each of the

functions:

θ 7→ −1
θ 7→ 0
θ 7→ − exp(−λ(τ(x) − τ̃))(τ(x) − τ̃)
θ 7→ − exp(−λ(τ(x) − τ̃))(τ(x) − τ̃))2

is continuously differentiable in θ at θ0. The first two are constants and the other two
derivatives are, respectively:

exp(−λ(τ(x) − τ̃))(τ(x) − τ̃)2

exp(−λ(τ(x) − τ̃))(τ(x) − τ̃))3

Hence if E[exp(−λ0(τ(x) − τ̃))(τ(x) − τ̃)2] < ∞ and E[exp(−λ0(τ(x) − τ̃))(τ(x) − τ̃)3] <
∞. In particular Assumption 2 is a sufficient condition for locally bounded derivatives
which satisfies Assumption 4 ii) in Chernozhukov et al. [2020]. Assumption 4 iii), namely∫
(∂gj
∂θl

(w, θ, γ̂k) − ∂gj
∂θl

(w, θ, γ0))dF0(w) follows from the continuous mapping theorem and
continuity of the the maps above with respect to γ(·) = τ(·) in the ∥·∥L2 norm.

We are finally ready to prove 15 using the lemmas above.

Theorem 15 (Asymptotic normality of θ). Let Assumptions 1–5. For θ̂ defined in
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Equation (17):

√
n(θ̂ − θ0) d→ N (0, S)

S := (G)−1Ω(G′)−1

G := E[Dθψ(w, θ, γ0, α0)]
Ω := E[ψ(w, θ0, γ0, α0)ψ(w, θ0, γ0, α0)T ]

and Dθψ(·) is the Jacobian of the augmented moment condition with respect to the pa-
rameters in θ.

Denote Ĝ = ĝ(w,θ̂,γ̂)
∂θ

. First note that by Lemma 28 we have ∥Ĝ−G∥ = oP (1). Then,
like in Chernozhukov et al. [2018] we have:

Ĝ−1 −G−1 = (G+ ∆̂n)−1 −G−1

= (G+ ∆̂n)−1(GG−1) − (G+ ∆̂n)G−1

= (G+ ∆̂n)−1(G− (G+ ∆̂n))G−1

= (G+ ∆̂n)−1∆̂nG
−1

Then like in Chernozhukov et al. [2018] from the basic matrix inequalities we have:

∥Ĝ−1 −G−1∥ = ∥(G+ ∆̂n)−1∆̂nG
−1∥

= ∥(G+ ∆̂n)−1∥ · ∥∆̂n∥ · ∥G−1∥

= OP (1) · oP (1) ·OP (1)
= oP (1)

Now by the central limit theorem and Lemma 27 we have:

1
|K|

∑
k∈K

( 1√
n

∑
i∈Ik

g(Wi, θ, γ0) + ϕ(Wi, θ̃−k, γ̂−k, , α̂−k)
)

= 1
|K|

∑
k∈K

1√
n

∑
i∈Ik

ψ(Wi, θ, γ0, α0) + oP (1) d→ N (0,Ω)

where Ω = E[ψ(w, θ0, γ0, α0)ψ(w, θ0, γ0, α0)]. Finally observe that a standard GMM
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Taylor linearization gives:

√
n

ν − ν0

λ− λ0

 =
 ∂

∂θ
ψ̂(w, θ0, γ̂, α̂)′V

∂

∂θ
ψ̂(w, θ0, γ̂, α̂)


−1

∂

∂θ
ψ̂(w, θ0, γ̂, α̂)′V

× 1
|K|

∑
k∈K

( 1√
n

∑
i∈Ik

g(Wi, θ, γ̂−k) + ϕ(Wi, θ̃−k, γ̂−k)
)

= (G′V G)−1G′V

 1
|K|

∑
k∈K

1√
n

∑
i∈Ik

ψ(Wi, θ, γ0, α0)
+ oP (1) d→ N (0, S)

which is the desired result.

I.8 Auxiliary Lemmas

Lemma 29. (Kennedy et al. [2020]-Lemma 2)

Let ĝ(·) be a function estimated from the Ick sample and evaluated on the Ik sample.
Then (Pn − P)(ĝ − g0) = OP

(
|ĝ−g0|√

n

)
.

Proof. The proof follows from independence of Ik and Ick, the computation of conditional
variance and Markov’s inequality. See Kennedy et al. [2020] for a detailed treatment.

J Additional Figures and Examples

In this section I include some additional visualizations and examples:

Example 30. To visualize Corollary 20 consider the case where the dimension of the
covariate space is k = 2. The original data is normal N (µ,Σ) with µ = (4, 3)T Σ = 2 0.5
0.5 2

. τ(x) = XTβ is linear with β = (4, 1)T . Experimental ATE = 18.98. Target

ATE = 15.
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Figure 8: least favorable distribution for normally distributed data. First panel in

red shows the density of N (µ,Σ) ∼ N
(
µ =

[
4
3

]
; Σ =

[
2 0.5

0.5 2

])
, the experimental

distribution. The second panel shows CATE = XTβ, linear in X with β = (4, 1)T . The
third panel shows the parameter shift of the least favorable distribution.

Here λ0 = 0.396. µ∗ = (3.1288, 2.4852). The KL divergence, for two multivariate
normal distributions (µ1,Σ1), (µ2,Σ2) is given by:
KL(X1||X2) = 1

2

[
log

(
|Σ2|
|Σ1|

)
− k + (µ2 − µ1)TΣ−1

2 (µ2 − µ1) + tr(Σ−1
2 Σ1)

]
. One could al-

ways compute the value of the KL divergence applying the nonparametric formula

δ∗ =
∫

X
exp(−λ0(τ(X) − τ̃))dµX

or in this case, the “parametric” formula given by the KL divergence between two normal
distributions.16 In this example both ways of computing the correspond to δ∗ = 0.789
corresponding to the mean shift illustrated above.

16The “parametric” formula to compute the KL divergence would not be valid in general since the least
favorable distribution may belong to a different class than the experimental distribution. Conversely,
the “nonparametric” formula is always valid.
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Figure 9: Piece-wise Linear CATE, experimental distribution is N (50, 102). Experimen-
tal ATE is 0.433, while τ̃ = 0.5. Because the experimental ATE is lower than the least
favorable , F ∗

X down-weights FX on the subset of R where the τ(x) is greater than τ̃
and up-weights it where it’s lower. The blue curve is the closest curve to the red one,
in KL-divergence, among the ones that satisfy τ ≥ 0.5.

Figure 10: Piecewise Quadratic CATE, experimental distribution is N (50, 102). Exper-
imental ATE is 0.484 while τ̃ = 0.5. Because the experimental ATE is lower than the
least favorable , F ∗

X down-weights FX on the subset of R where the τ(x) is smaller than
τ̃ and up-weights it where it’s greater. The blue curve is the closest curve to the red
one, in KL-divergence, among the ones that satisfy τ ≥ 0.5.

Example 31. Let’s now see graphically how to construct an example for a one di-
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mensional continuous variable example. In Figures 9 and 10 conditional treatment ef-
fects, given the 1-dimensional variable X are in green, the experimental distribution
is N (50, 102) is in red. Suppose that the policy-maker’s wants to maintain the claim
ATE ≤ 0.5. The experimental ATE and the “least favorable” ATE are obtained by in-
tegrating the green curve τ(x) against the red curve dFX(x) (which has density fX(x))
and the blue curve dF ∗

X(x) (which has density f ∗
X(x) respectively. The blue curve is

the closest distribution to the experimental distribution in red, as measured by the KL
divergence, that delivers the “least favorable ” ATE τ̃ = 0.5.
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