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Abstract

The classic Arrow-Debreu (1954) general equilibrium model cannot sus-
tain or account for the existence of money. This lacuna arises because each
household and firm faces a single budget constraint summarizing revenue and
expense in all commodities. Money, a carrier of value between transactions,
has no function when all credits and debits are rolled into a single expression.

A trading post model of N ≥ 3 commodities and transaction costs generates
1
2N(N−1) separate budget constraints with distinct bid and ask prices. General
equilibrium, market-clearing prices and transactions at each trading post, exists
under conventional continuity and convexity conditions. Commodities acquired
by an agent at one trading post and disbursed at another constitute commodity
money.
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1 Where’s the Money?

Describing a research agenda, Wright (2018) comments “ the use of money ... in
facilitating exchange ... should be outcomes of ... our theories.” See also (Hellwig
1993).

Hahn (1982) writes “The...challenge that...money poses to the theorist is this: the
best developed model of the economy cannot find room for it. The best developed
model is, of course, the Arrow-Debreu version of a Walrasian general equilibrium.
A first, and...difficult...task is to find an alternative construction without...sacrificing
the clarity and logical coherence ... of Arrow-Debreu.”

The budget constraint in most conventional microeconomics does not lead to mon-
etary trade. A household has an endowment r ∈ RN

+ and a consumption plan c ∈ RN
+

formed at prevailing prices p ∈ RN
+ . Then the choice of c is constrained by the budget,

p · c ≤ p · r. This is precisely the formulation in the Arrow-Debreu model, Arrow &
Debreu (1954),Debreu (1959). We know from everyday experience that there is not
one single budget constraint but many. At each of many transactions, an agent pays
for what he gets. To introduce money into the Arrow-Debreu model, the model needs
to introduce a multiplicity of separate budget constraints.

A century earlier, Menger (1892) explained:
A commodity should be given up by its owner in exchange for another more useful to him. But

... exchange ... for little metal disks apparently useless as such, or for documents representing the
latter, is ... mysterious.

Goods [are] ...more or less saleable [absatzfahig marketable], according to the greater or less
facility with which they can be disposed of ... at current purchasing prices, or with less or more
diminution.

The theory of money necessarily presupposes a theory of the saleableness [Absatzfahigkeit, mar-
ketability] of goods.

when any one has brought goods not highly saleable to market, the idea uppermost in his mind
is to exchange them, not only for such as he happens to be in need of, but ... for other goods ...
more saleable than his own .... By ... a mediate exchange, he gains the prospect of accomplishing his
purpose more surely and economically than if he had confined himself to direct exchange .... Men
have been led ... without convention, without legal compulsion,... to exchange ... their wares ... for
other goods ... more saleable ... which ... have ... become generally acceptable media of exchange.

legislation...is neither the only, nor the primary mode in which money has taken its origin...Money
has not been generated by law. In its origin it is a social, and not a state institution.

The plan of this article is to demonstrate an economic general equilibrium where
(commodity) money arises endogenously. Goods trade as commodity pairs where N ≥
3 commodities generate 1

2
N(N − 1) separate budget constraints. There are distinct

bid and ask prices. ‘Saleability’ is a narrow bid/ask spread. Market-clearing prices
and transactions are shown to exist based on continuity and convexity conditions.
Commodities acquired by a household at one trading post and disbursed at another
are commodity money. As Menger asserted, use of media of exchange is an outcome
of market equilibrium.
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2 Trading Posts

The trading post model consists of N commodities traded pairwise at 1
2
N(N − 1)

trading posts, each with a quid pro quo budget constraint. Acquistions are repaid
by delivery of equal value. There are distinct bid and ask prices; the bid/ask spread
reflects transaction costs. Walras (1896) forms the picture this way:

we shall imagine that the place which serves as a market for the exchange of all the commodities...
for one another is divided into as many sectors as there are pairs of commodities exchanged. We

should then have m(m−1)
2 special markets each identified by a signboard indicating the names of the

two commodities exchanged there as well as their ... rates of exchange...

The determination of which trading posts are active in equilibrium is endogenous
and characterizes the monetary or barter character of trade. When most of the
1
2
N(N − 1) trading posts are active, the equilibrium is barter. When a household

acquires a commodity at one trading post and disposes of it at another, the commodity
is acting as commodity money. The equilibrium is monetary with a unique money if
only N trading posts out of 1

2
N(N − 1) are active, those trading all goods against

‘money,’ (Starr 2003, 2012).

3 Commodities, Prices, Bid/Ask Spread

Let N = number of elementary commodities, N ≥ 3 , each of which may trade against
any other, generating

N(N−1) dimensions of activity at bid prices and another N(N−1) at ask prices.
There are 1

2
N(N−1) trading posts with two goods traded at each. Further, commodi-

ties enter both in bid and ask price transactions (wholesale or retail transactions). In
addition, commodities act as inputs to transaction costs.

Price vectors are q, π each ∈ RN(N−1)
+ . Eventually, homogeneity of degree zero of

supply and demand correspondences will be demonstrated, so that attention can be
confined to the unit simplex in R2N(N−1)

+ . q represents the prevailing bid prices, q+π
is the vector of prevailing ask prices, π is the vector of the premium above bid prices
of ask prices.

A typical co-ordinate entry will be denoted x(k, l), 1 ≤ k, l ≤ N, k 6= l, represent-
ing commodity k at the trading post of k for l. This is the same trading post as
for l for k. xS(k, l) represents good k traded for l at bid price. xB(k, l) represents
good k traded for l at ask price. The bid price of (k, l) is q(k, l) ; the ask price is
q(k, l) + π(k, l). π(k, l) is the ask premium or retail premium. Purchases are positive
co-ordinates, sales are negative. Much of this notation follows Foley (1970).
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Let:

B(p) ≡{x ∈ R2N(N−1)| ∀k, l ∈ {1 ≤ k, l ≤ N, k 6= l}
q(k, l)xS(k, l) + (q(k, l) + π(k, l))xB(k, l)

+ q(l, k)xS(l, k) + (q(l, k) + π(l, k))xB(l, k) ≤ 0}

B(p) is the trading budget presenting the collection of transactions priced for quid
pro quo at each trading post. Budgets are balanced at each trading post separately.
Purchases enter with positive signs, sales with negative signs. Then the budget con-
straint is that sales must be (weakly) more valuable than purchases. The budget
constraint in this model distinguishes it from the Arrow-Debreu model. Each agent
in this setting faces 1

2
N(N − 1) budget constraints, one at each trading post.

H is the finite population of households. For each i ∈ H, let xi ∈ R2N(N−1) be
i’s trade vector. Household i has an endowment ri ∈ R2N(N−1) . The dimension of ri

is set at 2N(N − 1) for notational consistency. Household i has utility function ui .
Households sell at bid prices, q, and buy at ask prices, q + π .

4 Example

Consider a simple example where there are only 3 types of households and 3 com-
modities. Each type of household is identified by its preferences and there are a large
number, Q of each type. As such, each household will act as a price taker and will not
be able to meaningfully influence transaction costs. For a household, a trading plan
is a vector x ∈ R12. Households are labeled with superscript h ∈ {i, j, k}. Household
h is endowed with 100 units of commodity h. Households’ utility functions are as
follows:

U i(x) = xiB(k, i) + xiB(k, j) + xiS(k, i) + xiS(k, j)

U j(x) = xjB(i, j) + xjB(i, k) + xjS(i, j) + xjS(i, k)

Uk(x) = xkB(j, i) + xkB(j, k) + xkS(j, i) + xkS(j, k)

Household i is endowed with i and wants k, j is endowed with j and wants i, k is
endowed with k and wants j. There are three trading posts, {i, j}, {j, k}, {k, i}. At
each trading post, each commodity there has a bid price of unity. q(i, j) = q(j, i) =
q(j, k) = q(k, j) = q(k, i) = q(i, k) = 1. There is a transaction cost markup at each
post, particularly high at {i, j}. π(i, j) = π(j, i) = 1, π(i, k) = π(k, i) = π(k, j) =
π(j, k) = ε. ε > 0, ε is small.

Ask prices at the trading posts then are q(i, j)+π(i, j) = 1+1 = 2 = q(j, i)+π(j, i),
q(i, k) + π(i, k) = 1 + ε = q(k, i) + π(k, i), q(j, k) + π(j, k) = 1 + ε = q(k, j) + π(k, j),
where ε > 0, ε is small.

Households of type j could trade directly for i, but they would incur the 100%
markup on i. Trading indirectly through k doubles the trading volume but incurs
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Figure 1: Trade Diagram for 3 Households

only two ε markups. So trading through k is advantageous. k becomes commodity
money.

Figure 1 offers a pictorial representation of the equilibrium behavior.
Hence, for such a pattern to arise, it must be that type j’s utility from indirect

trade is greater than its utility from direct trade and the opposite should hold for
types i and k.

5 Firms

There is a finite population of firms j ∈ F. Firms deal in the trading process, buying
and selling, incurring transaction costs in commodities. There is no production in
the model. Firm j formulates a transaction plan (yjS, yjB, wj) ∈ R3N(N−1). Positive
co-ordinates of yjB, yjS indicate purchases. Negative co-ordinates indicate sales. Neg-
ative co-ordinates in w indicate inputs to the trading technology, transaction costs.
yjS is the vector of transactions, purchases and sales, the firm makes at bid (whole-
sale) prices. yjB is the vector of purchases and sales subject to the premium buying
(retail) price. Note that in contrast to the households, for the firm, both yjS and
yjB may have both positive and negative co-ordinates. The firm’s ability or inability
to deal in positive or negative actions at bid or ask prices is formalized in its tech-
nology Y j. The budget constraint on firm transactions is for each two commodities
k, `,= 1, 2, . . . , N,

q(k, `) · yjS(k, `) + (q(k, `) + π(k, `)) · yjB(k, `)

+ (q(`, k) + π(`, k)) · yjB(`, k) + q(`, k) · yjS(`, k) ≤ 0 (B′)

Equivalently:

(yjS, yjB) ∈ B(p) ≡ {x ∈ R2N(N−1)|q(k, l)xS(k, l) + (q(k, l) + π(k, l))xB(k, l)

+ q(l, k)xS(l, k) + (q(l, k) + π(l, k))xB(l, k) ≤ 0,

for all 1 ≤ k, l ≤ N, k 6= l}
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A suitable maximand for the firm needs to be defined. It is simplest to ask the
firm to maximize profit, (q, q + π) · (yjS, yjB + wj). This applies though the firm
cannot easily distribute the accounting value of profit to shareholders.

The technically possible mix (yjS, yjB, wj) of purchases, inputs, and sales of firm
j is contained in the closed convex set Y j ⊆ R3N(N−1). Firm j’s supply decision then
is:

Sj†(p) ≡ {(yS, yB, w)|(yS, yB, w) = arg max (q, q + π) · (yjS, yjB + wj)

subject to (yS, yB, w) ∈ (Y j ∩ [B(p)× RN(N−1)])}

Firm j’s marketed supply behavior then is:

Sj(p) ≡ {(yS, yB)|(yS, yB, w) = arg max (q, q + π) · (yjS, yjB + wj)

subject to (yS, yB, w) ∈ (Y j ∩ [B(p)×RN(N−1)])}

There is a finite set of households, H. For each i ∈ H, let xi ∈ R2N(N−1) rep-
resent i’s transaction offers. Define x̂ = (x1, x2, ..., x#H) ∈ R#H2N(N−1). Household
i owns a proportion Θij of firm j (Foley notation), 1 ≥ Θij ≥ 0,

∑
i∈H

Θij = 1. The

distribution of firms’ earnings to households cannot easily be summarized as a money
dividend, so it will enter as a commodity dividend distribution from firms to house-
holds, Θij(yjS, yjB + wj).

The following assumptions on the trading technology, P.I to P.IV, are standard in
the general equilibrium literature: they are adapted from Starr (2011)

(P.I) Y j is convex for all j.
(P.II) 0 ∈ Y j for each j.
(P.III) Y j is a closed convex cone for all j.
(P.IV) (No Free Transaction) Let (yS, yB, w) ∈ Y j then:

(i)If (yS, yB, w) 6= 0 then w 6= 0, w ≤ 0 co-ordinatewise.
(ii) for each k = 1, 2, . . . , N,

∑̀
yS(k, `) +

∑̀
yB(k, `) +

∑̀
w(k, `) ≥ 0.

Note that P.IV implies that there are no free transactions. It also implies limits on
reversibility; some firms’ actions in the trading sector may reverse those of another
firm, but transaction costs will be irreversibly expended in the process. P.IV(ii)
says that firm j must arrange its affairs so that it is (weakly) a net purchaser of
each of the N commodities. Deliveries (negative) at one trading post may exceed
purchases (positive) there, but aggregate purchases by the firm of any commodity
must (weakly) exceed sales. This reflects that the economy is pure exchange with
some resource expenditure on transaction costs.
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6 Attainable Transactions

The aggregate trading technology is Y ≡
∑
j∈F

Y j. The economy’s initial resource vector

is
r =

∑
i∈H

ri ∈ R2N(N−1)
+ . Then (yS, yB, w) ∈ Y is said to be attainable if for each

k = 1, 2, . . . , N, we have:

∑
`

[yS(k, `) + yB(k, `)] ≤
∑
`

r(k, `), and∑
`

[w(k, `)] ≥ −
∑
`

r(k, `)

(yj′S, yj′B, wj′) ∈ Y j′ is said to be attainable in Y j′ if there is (yjS, yjB, wj) ∈ Y j

for all j ∈ F, j 6= j′, so that (yj′S, yj′B, wj′B) +
∑

j∈F,j 6=j′
(yjS, yjB, wj) is attainable.

(yjS, yjB) ∈ Sj(p) is said to be attainable if there is (yjS, yjB, wj) ∈ Y j so that
(yjS, yjB, wj) is attainable in Y j.

Lemma 1. Assume P.I through P.IV. Then the set of attainable elements (yS, yB, w) ∈
Y is bounded. And for each j′ ∈ F , the set of (yj′S, yj′B, wj′) ∈ Y j′ attainable in Y j′

is bounded.

Proof: Appendix

Choose C ∈ R,C > 0 so that C > |(yS, yB, w)| (note the strict inequality) for
all attainable (yS, yB, w) ∈ Y , and so that C > |(yj′S, yj′B, wj′)| (note the strict
inequality) for all (yj′S, yj′B, wj′) ∈ Y j′ attainable in Y j′ for all j′ ∈ F. That is, there
is a constant C so that all of the attainable points in Y and in any Y j are strictly
contained in a ball of radius C centered at the origin. Let Ψ ⊆ RN(N−1) be a closed ball
in N(N−1) space of radius C centered at the origin. Let Ψ2 = Ψ×Ψ, Ψ3 = Ψ2×Ψ.
Let Ψ̄ be a closed ball of radius C(#H + #F ) in N(N − 1) space. That is, Ψ̄ is a
closed ball of radius sufficiently large to encompass all #H-fold plus #F-fold sums
taken from Ψ . Let Ψ̄2 be a closed ball of radius C(#H + #F ) ∈ 2N(N − 1) space.

Lemma 2. Let p ∈ R2N(N−1)

+ . B(p), Sj(p), and Sj†(p) are homogeneous of degree zero
in p.

Proof: Appendix.

As a consequence of Lemma 2, it is sufficient to consider p ∈ ∆ where ∆ is the
unit simplex in R2N(N−1)

+ . Let p ∈ ∆, p = (q, π). Firm j’s provisionally bounded supply
decision then is:
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S̃j†(p) ≡ {(yS, yB, w)|(yS, yB, w) = arg max(q, q + π) · (yjS, yjB + wj)

subject to (yS, yB, w) ∈ (Y j ∩ [B(p)×RN(N−1)] ∩Ψ3)}

Firm j’s provisionally bounded marketed supply behavior then is:

S̃j(p) ≡ {(yS, yB)|(yS, yB, w) = arg max(q, q + π) · (yjS, yjB + wj)

subject to (yS, yB, w) ∈ (Y j ∩ [B(p)×RN(N−1)] ∩Ψ3)}

Let (yjS, yjB) ∈ S̃j(p). (yjS, yjB) is said to be attainable if there is (yjS, yjB, wj) ∈
Y j so that (yjS, yjB, wj) is attainable.

Lemma 3. Assume P.I through P.IV. Then S̃j†(p) and S̃j(p) are nonempty, convex-
valued, and upper hemicontinuous throughout p ∈ ∆. Let (yjS, yjB) ∈ S̃j(p) be at-
tainable. Then (yjS, yjB) ∈ Sj(p). Let (yjS, yjB, wj) ∈ S̃j†(p) be attainable. Then
(yjS, yjB, wj) ∈ Sj†(p).

Proof: Appendix.

7 Households

There is a finite set of households H with typical element i ∈ H. Household i’s possible
consumption set is W i ⊆ R2N(N−1). We can specify W i more precisely. Define

W i ≡ {x′ ∈ R2N(N−1)|
N∑

l=1,k 6=l

(x′B(k, l) + x′S(k, l)) ≥ 0, for each k = 1, 2, . . . , N}.

(The notation x′ is intended to avoid confusion with household transaction offers.)

Household i has an endowment ri ∈ R2N(N−1)
+ . It is sufficient to characterize house-

hold preferences by a well-behaved continuous concave utility function ui on W i ⊆
R2N(N−1).

The following conditions on household trading and preferences are familiar in the
general equilibrium theory, with adaptation to the current setting. They are intended
to parallel their counterparts in Starr (2011). (C.I), (C.II), (C.III) are fulfilled by the
definition of W i above.

(C.I) W i is closed and nonempty.

8



(C.II) W i ⊆ R2N(N−1) is bounded below and unbounded above.
(C.III) W i is convex.
(C.IV) (nonsatiation) Let x ∈ W i. Then there is x′′ ∈ W i so that ui(x′′) > ui(x).
(C.V) (continuity) ui : W i → R. ui is well defined, and continuous.
(C.VI) (convexity of preferences) ui is quasi-concave. That is, let there be x, x′ ∈

W i so that ui(x′) ≥ ui(x), 0 ≤ α ≤ 1 . Then ui(αx+ (1− α)x′) ≥ ui(x).
(C.VII) (strict positivity of income and endowment) ri ∈ W i. ri is strictly

positive co-ordinatewise, ri >> 0, where 0 is the zero vector in R2N(N−1).

Household i has a share Θij of firm j . Firm j makes a distribution to shareholders
[(yjS, yjB + wj)] ∈ R2N(N−1) of which i receives Θij[(yjS, yjB + wj)] leading to a
total of dividend distributions

∑
j∈F

Θij[(yjS, yjB +wj)]. i makes trades xi ∈ R2N(N−1).

xi = (xiS, xiB). xiB ≥ 0, xiB ∈ RN(N−1), is the vector of i’s purchases. xiS ≤ 0, xiS ∈
RN(N−1) is the vector of i’s sales. The household sells at bid prices, and buys at ask
prices. (Informally, it buys retail and sells wholesale. )

The budget constraint on household transactions is xi ∈ B(p).
Let ŷ = (y1S, y1B, w1, . . . , yjS, yjB, wj, . . . .) ∈ Y 1 × Y 2 × . . . × Y #F . The household
opportunity set is defined as:

Ai(p, ŷ) ≡ B(p) + {ri}+
∑
j∈F

Θij[(yjS, yjB + wj)]

Demand behavior is given by:

Di(p, ŷ) = {x ∈ B(p)|x = arg maxui(x+ ri +
∑
j

Θij(yjS, yjB + wj))

subject to (x+ ri +
∑
j

Θij(yjS, yjB + wj)) ∈ W i}

=
{
{ arg maxui(x) for x ∈ [Ai(p, ŷ) ∩W i]}

− {ri +
∑
j∈F

Θij[(yjS, yjB + wj)]}
}

The provisionally bounded household opportunity set is defined as

Ãi(p, ŷ) ≡ {x ∈ B(p)|
[
x+ ri +

∑
j∈F

Θij[(yjS, yjB + wj)]
]
∩Ψ2}

Provisionally bounded household demand behavior is described as:

9



D̃i(p, ŷ) = {x ∈ B(p)|x = arg maxui(x+ ri +
∑
j

Θij(yjS, yjB + wj))

subject to [x+ ri +
∑
j

Θij(yjS, yjB + wj)] ∈ Ψ2}

=
{
{ arg maxui(x) for x ∈ [Ãi(p, ŷ) ∩W i]}

− {ri +
∑
j∈F

Θij[(yjS, yjB + wj)]}
}
.

Let Ψ3#F be the #F-fold Cartesian product of Ψ3 .

Lemma 4. Let ŷ ∈ Ψ3#F .
(i) Then D̃i(p, ŷ) is nonempty and homogeneous of degree zero in p. Ãi(p, ŷ) is con-
tinuous (upper and lower hemicontinuous) throughout ∆ × Ψ3#F and convex-valued.
D̃i(p, ŷ) is upper hemicontinuous throughout ∆ and convex-valued.
(ii) Let xi ∈ D̃i(p, ŷ) be attainable. Then xi ∈ Di(p, ŷ).

Proof: Appendix.

8 General Equilibrium

A market equilibrium is a vector of prices (q∗, π∗), a vector ci∗ ∈ W i, and xi∗ ∈
R2N(N−1) for each household, i ∈ H, and a vector (yjS∗, yjB∗, wj∗) ∈ Y j for each firm
j ∈ F, such that

(i) ci∗ = ri + xi∗ +
∑
j∈F

Θij[(y∗jS, y∗jB + w∗j)] is maximal with respect to ui in W i

subject to xi ∈ B(p∗) at p∗ = (q∗, π∗),

(ii) (yjS∗, yjB∗, w∗) maximizes [(q, q + π) · (yjS, yjB + wj)] subject to (yjS, yjB)∈ B(p∗),
and (yjS, yjB, wj) ∈ Y j.

(iii)
∑
i

(xiS∗, xiB∗) +
∑
j

(yjS∗, yjB∗) ≤ 0 co-ordinatewise

(iv) q∗ ≥ 0, π∗ ≥ 0 (the inequalities hold co-ordinatewise).

Note that in (iii) supplies enter with negative signs and demands with positive
signs co-ordinatewise.

Let x̂ ∈ Ψ2#H ; ŷ ∈ Ψ2#F .
Excess demand is defined as Z(x̂, ŷ) ≡

∑
i

(xiS, xiB) +
∑
j

(yjS, yjB).
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(P.I) through (P.IV) and (C.I) through (C.VII) are sufficient to assure existence
of a market clearing equilibrium price vector p = (q, π). (C.VII) is used to avoid
discontinuities at the boundary.

Lemma 5 (Weak Walras Law). Let p = (q, π) ∈ ∆. Let (xiS, xiB) ∈ D̃i(p, ŷ)and
let (yjS, yjB) ∈ S̃j(p).
Then q · [

∑
i

xiS +
∑
j

yjS] + (q + π) · [
∑
i

xiB +
∑
j

yjB] ≤ 0.

Equivalently, q · [
∑
i

xiS +
∑
j

yjS +
∑
i

xiB +
∑
j

yjB] + π · [
∑
i

xiB +
∑
j

yjB] ≤ 0.

Proof: Appendix.

Theorem 1. Assume (P.I) through (P.IV) and (C.I) through (C.VII). Then the
economy has a competitive equilibrium.

Proof. Let
∏
j

,
∏
i

indicate multiple Cartesian product.

Let x̂ ∈
∏
i∈H

D̃i(p, ŷ) ⊆ Ψ2#H ; x̂ ≡ (x1S, x1B;x2S, x2B; ...;x#HS, x#HB)

ŷ ∈
∏
j∈F

S̃j†(p) ⊆ Ψ3#F ; ŷ ≡ (y1S, y1B, w1; y2S, y2B, w2; ...; y#FS, y#FB, w#F )

Excess demand is defined as: Z(x̂, ŷ) =
∑
i∈H

(xiS, xiB) +
∑
j∈F

(yjS, yjB); z = (zS, zB)

Let Γ(z) ≡ {(q′, π′) ∈ ∆|(q′, π′) = arg max(q,π)∈∆(q, π) · (zS + zB, zB)} be the price
adjustment correspondence.

Let T (p, x̂, ŷ, z) ≡ Γ(z)×
∏
i∈H

D̃i(p, ŷ)×
∏
j∈F

S̃j†(p)× Z(x̂, ŷ).

That is, T is a set-valued mapping
T : ∆×Ψ2#H ×Ψ3#F × Ψ̄2 → ∆×Ψ2#H ×Ψ3#F × Ψ̄2.

Note that Γ, D̃i, S̃j†, and Z(x̂, ŷ) are each well defined, upper hemicontinuous,
and convex-valued throughout ∆ × Ψ2#H × Ψ3#F × Ψ̄2. Then the proof will apply
the Kakutani Fixed Point Theorem, to generate a fixed point, (p

◦
, x̂
◦
, ŷ
◦
, z
◦
).

Lemma A. The correspondence T (p, x̂, ŷ, z) is non-empty, upper hemicontinuous
and convex valued.

Proof of Lemma A: D̃i(p, ŷ) is non-empty, convex valued and upper-hemicontinuous
by Lemma 4. Similarly, each S̃j is non-empty, convex valued and upper-hemicontinuous
by Lemma 3. Z(x̂, ŷ) is an additive function between finite dimensional spaces, hence
continuous. Trivially it is also non-empty and convex valued since it is the finite
sum of correspondences that satisfy these properties. Finally Γ is nonempty, since
(q, π) ·(zS +zB, zB) is a continuous function on a compact set ∆, hence, by the Weier-
strass theorem, it achieves a maximum. Because (q, π) · (zS + zB, zB) is linear in the
z’s, the set of maximizers of that function is a convex set. Hence Γ is convex valued.
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Now we show that Γ is upper-hemicontinuous. Think of z as the parameter
affecting the continuous function f(p, z) := (q, π) · (zS + zB, zB), the maximand.
Notice that the constraint set ∆ can be viewed as a constant, compact correspondence
of z. Hence, ∆, as a correspondence, is trivially continuous. Then, by the maximum
theorem, the set of maximizers with respect to p = (q, π) of f(z, p), is an upper-
hemicontinous correspondence of the parameter z. Since we defined Γ(z) as such a
set of maximizers, the desired result follows.

Notably, the finite cartesian product of correspondences preserves upper-hemicontinuity,
convex valued-ness and non-emptiness. This completes the proof of Lemma A.

The proof of the theorem continues. ∆ is clearly a compact, convex, non-empty
set. The above lemma satisfies the assumptions of the Kakutani fixed point theorem,
hence T has a fixed point, i.e. (po, xo, yo, zo) ∈ T (po, xo, yo, zo).

We now show that (po, xo, yo, zo) is a market clearing equilibrium.
By the Weak Walras Law, Lemma 5, (q◦, π◦) · (z◦S + z◦B, z◦B) ≤ 0.
Notice that (q◦, π◦) ≥ 0 and (q◦, π◦) is argmax(q,π)∈∆[q · (zoS + zoB) + π · zoB]

so z
o ≤ 0. If the inequality were not to hold, the maximand could be increased by

increasing the price of the positive component of z. So it must be the case that zo ≤ 0,
co-ordinatewise.

We have xi◦ ∈ D̃i(p◦, ŷ◦), yj◦ ∈ S̃j(p◦). Note the tilde ·̃ notation. We now seek
to demonstrate that, for each i ∈ H and each j ∈ F , xi◦ ∈ Di(p◦, ŷ◦), yj◦ ∈ Sj(p◦).
Recall zo =

∑
i∈H

xio +
∑
j∈F

yjo where xio ∈ D̃i(po, ŷo) and yjo ∈ S̃j(po).

But
∑
i∈H

xio +
∑
j∈F

yjo ≤ 0, so xio, i ∈ H is attainable, so |xio| < C . But |xio| < C

and xio ∈ D̃i(p
o
, ŷo) implies that the constraint to length C is not binding, so by

Lemma 4, xio ∈ Di(po, ŷo). Similarly, by Lemma 3, yjo ∈ Sj(po, x̂o). Hence markets
clear and the households and firms are optimizing subject to budget and technology
constraints. The length constraint is not binding. The price and allocation is a
general equilibrium.

9 Commodity Money

The distinctive result here is to demonstrate the existence and transaction function
of money, endogenously as the result of elementary properties of the economy and
its equilibrium. Commodity moneys occur endogenously in the market equilibrium
reflecting the constraints of quid pro quo embodied in B(p).

In a competitive general equilibrium, let xiS(k, `) < 0, xiB(k,m) > 0, for some
i, k, `,m. That is, household i both buys and sells good k in exchange for two different
goods. Then k is a medium of exchange, a commodity money. How can we distinguish
between commodity k’s role as a medium of exchange and arbitrage in k ? There will
be no arbitrage in a general equilibrium. Any profitable arbitrage will be infinitely
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profitable at infinite scale. Hence it cannot occur in equilibrium. In transactions
where a household both buys and sells the same commodity, then that commodity is
a medium of exchange, commodity money.

Recall that xiS(k, l) ≤ 0 is i’s sales of k for l. xiB(k, l) ≥ 0 is i’s purchases of k for l.
Then

∑
l 6=k
−xiS(k, l) +

∑
l 6=k

xiB(k, l) ≥ 0 is i’s gross trade in k.
∑
l 6=k

xiS(k, l) +
∑
l 6=k

xiB(k, l)

is i’s net trade in k. Then
∑
l 6=k
−xiS(k, l) +

∑
l 6=k

xiB(k, l)−|[
∑
l 6=k

xiS(k, l) +
∑
l 6=k

xiB(k, l)]|

is the volume of transactions in good k commodity money, flow of good k as medium
of exchange, gross transactions minus net transactions.

10 Alternative Approaches

10.1 Fiat Money

Government-issued fiat money can occur and maintain positive value through accept-
ability in payment of taxes, Goldberg (2012), Knapp (1905), Lerner (1947), Smith
(1963), Ostroy & Starr (1974), Starr (2012). It can become a common medium of
exchange through low transaction cost or thick market externality, (Rey 2001).

10.2 Money Demand and Store of Value

This paper is a single period model, so it does not treat directly the stock of money
held over time. Particularly germane in this context is the Baumol (1952)-Tobin
(1956) model. Treating that model in an Arrow-Debreu general equilibrium context is
beyond the scope of this paper, but the outlines of an interpretation can be developed.
Note that the literature includes some notable work on the topic, Hahn (1971), Heller
(1974), Heller & Starr (1976), Kurz (1974), Starrett (1973).

The first step would be to time-date all of the commodities, designating each
commoditiy by its date of availability. A typical commodity will now be denoted
x(k, l, t). Dating a commodity is conventional in the Arrow-Debreu model, Debreu
(1959), but here it is simplest to avoid the notion of futures markets, so transactions at
date t should be only of goods dated t. It is possible to introduce a storage technology
for each household, but it it is probably easier to suppose that all commodities are
— if not consumed or sold — durably carried over from one period to the next. Let
ci(k, l, t) be household i’s consumption of x(k, l, t) at date t. Then the carryover of
x(k, l, t) from t to t+ 1 would be di(k, l, t) ≡ di(k, l, t− 1) + xBi(k, l, t) + xSi(k, l, t)−
ci(k, l, t). In addition, there should be nonnegativity requirements, di(k, l, t) ≥ 0. The
nonnegativity requirement means that positive inventories may be carried forward,
but not deficits — one cannot have a debt balance in x(k, l, t).

A finite horizon allows the analysis to proceed. The finite horizon leads to issues
at and near the terminal period, where media of exchange may lose their value. Since
the present model lends itself to commodity money, that is not so pressing a problem
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as for fiat money. In the case of fiat money, it may be sufficient to assume that the
desirability of paying taxes in the terminal period remains significant.

10.3 Matching Models

How does commodity money in the trading post model compare to commodity money
in the trade search literature, (Kiyotaki & Wright 1989, 1993)? In the trading post
model, the commodity money can arise in equilibrium because the firm’s transaction
cost structure can support a bid-ask spread that is different for each commodity pair.
There is a similarity to the transaction costs in Kiyotaki & Wright (1989). In that
model, trade costs endogenously arise as a function of both agents’ trading strategies
and storage costs. The storage cost is a deep parameter of the model which determines
the type of commodity money equilibria that can arise.

In the case where there is a thick market externality, Rey (2001) and below sec-
tion 12, in the trading post model, there is another construction here paralleling
the matching model. In the trading post model, coordination around a commodity
money would be mediated by the effect of trade volumes in the firm’s technology
and depends on market forces. Kiyotaki & Wright (1989) uses a belief system about
other agents’ adoption of commodity money as a self-verifying coordination device,
designating speculative equilibria. Hence, in both models, the nature of commodity
money equilibria can be constructed to be self-enforcing, obtaining the same qualita-
tive economic result.

Finally, in both models, commodity money equilibria may support more than one
commodity money at a time, albeit for households’ with different sets of preferences.

An additional framework is the one presented by Howitt (2005) which combines
elements of cash-in-advance and search theoretic models. Our treatment shares the
existence of a monetary equilibrium under very general assumptions on preferences.
In Howitt (2005) monetary and commodity quid-pro-quo transactions may coexist.
Conversely in the trading post model, full monetary equilibrium may arise even when
there is double coincidence of wants, analogous to Howitt (2005) robust monetary
equilibrium, which is not always guaranteed to exist. We believe this latter feature
reflects the almost exclusive monetary nature of real world transactions.

An early account of money in a strategic setting is also given in Shubik (1973). The
author notes that “money enters into trade in a way that distinguishes it strategically
from other commodities”. The present paper incorporates this lesson in that com-
modity money is an equilibrium notion that arises from households’ trading strategies
as opposed to households’ preferences.

11 Conclusion

The Arrow & Debreu (1954) model summarizes each agent’s budget as a single equa-
tion: the value of sales minus the value of purchases is a firm’s profit; the value of
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endowment plus the value of dividends is the limit of a household’s purchases. That is
a powerful simplification. The alternative, presented here, is to recognize a separate
budget at each of many distinct transactions. That treatment generates a need for a
carrier of value between transactions. Hence a model of commodity money.

12 Postscript: Thick Market Externality

Menger (2002) writes:
The emergence of media of exchange In this situation it will occur to everyone bringing

goods to market to exchange them for goods meeting his special need that if his goal is not directly
attainable because of the limited marketability of his goods, he could exchange them for goods that
are considerably more marketable than his own even if he has no direct need for them. To be sure, he
does not thus attain the ultimate goal of his intended exchange (acquisition of the goods he especially
needs!) immediately and directly. But he comes closer to this goal. In the roundabout way of an
intermediary exchange (by giving up his less marketable goods for more marketable ones), he gets the
chance of reaching his ultimate goal in a surer and more economical way than by restricting himself
to direct exchange ... at first only some economic agents will have recognized the advantage for their
economic activities arising from the procedure just described - an advantage actually independent
of the general recognition of a good as medium of exchange...

When the relatively most saleable commodities have become “money,” the great event has ...
the effect of substantially increasing their originally high saleableness.

Rey (2001) formalizes this concept as a ‘thick markets externality.’ High trading
volume generates low transaction costs. Then the resulting market equilibriun in
intermediary commodities concentrates on high volume instruments. The medium of
exchange becomes unique in equilibrium.

This concept is illustrated in the following example.
Define the volume of trade at ask prices v(l, l′) for commodity l and l′ at trading

post (l, l′) as:

v(l, l′) := |
∑
h∈H

xhB(l, l′)|+ |
∑
h∈H

xhB(l′, l)|

At a typical trading post, the transaction cost, assessed in the good demanded, is
described as

wj(l, l′) =

[
1

1 + v(l, l′)

]
(|yjB(l, l′)|)

This cost structure reflects a thick markets externality. High offer volume gener-
ates low marginal and average transaction cost. That is, transaction costs are linear
in the transactions executed at the trading post but inversely proportional to the
total volume of household offers at the trading post (l, l′). Marginal cost pricing of
the transaction cost markup gives

π(l, l′) =
[

1
1+v(l,l′)

]
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Going back to the example of Section 4, let π(i, j) = 1 = π(j, i), π(j, k) = π(k, j) =
π(k, i) = π(i, k) ≈ 1

100Q
= ε. This pricing leads to the pattern of trade in the example

of Section 4.
Considering the high markup at {i, j} households of type j do not trade directly

for i. Rather they trade j for k and k for i. k becomes commodity money. Why indi-
rect trade? The markup at {k, j} and {k, i} is much lower, ε. Where do the markups
come from? High volume at {k, j} and {k, i} creates low transaction costs and con-
sequent low (competitive) markup considering the thick markets externality. Thus
high volume trade and low volume trade each become self-confirming as discussed in
Tobin (1980).

Arrow & Hahn (1971) present sufficient conditions for establishing existence of
general equilibrium in the presence of external effects. The result can follow under
the usual continuity and convexity conditions, but it requires additional structure
focusing on compactness of tastes and technology as external effects vary. We leave
this to future research.

13 Appendix: Proofs of Lemmas

13.1 Lemma 1

Lemma 1. Assume P.I through P.IV. Then the set of attainable elements (yS, yB, w) ∈
Y is bounded. And for each j′ ∈ F , the set of (yj′S, yj′B, wj′) ∈ Y j′ attainable in Y j′

is bounded.

We recall the specification of attainable set. A vector of exchanges (yS, yB, w) is
said to be attainable if it satisfies:

∑
j∈F

∑
l

yjS(k, l) +
∑
j∈F

∑
l

yjB(k, l) ≤
∑
i∈H

∑
l

ri(k, l)

−
∑
j∈F

∑
l

wj(k, l) ≤
∑
i∈H

∑
l

ri(k, l)

The first condition says that the net purchase of resources cannot exceed the endow-
ment of the economy as a whole. The second inequality says that total disbursement
in transaction costs cannot exceed the total endowment of the economy.

Now a vector of exchanges yj
′

:= (yj
′S, yj

′B, wj
′
)is attainable in Y j′ if, for each

j 6= j′ there is yj := (yjS, yjB, wj) ∈ Y j such that yj
′
+
∑

j 6=j′ y
j is attainable.

Recall P.I, P.II, P.III, P.IV.

Proof: The proof proceeds by contradiction. We will denote yνj
′
:= (ySνj

′
, yBνj

′
, wνj

′
)

First suppose there exist indeed one j′ ∈ F such that its attainable set is unbounded.
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Then, there must be a sequence {yνj} ⊂ Y j, for each j ∈ F such that the following
properties hold:
i) |(ySνj′ , yBνj′ , wνj′)| → +∞
ii) yνj ∈ Y j ∀j ∈ F
iii) yν :=

∑
j∈F y

νj are all attainable.

set µv := maxj∈F |yνj|. Because for at least one firm j′, the set of attainable y is
unbounded we immediately have µv → +∞ as ν → +∞.

By P.II, 0 ∈ Y j. By P.I, convexity of the Y j, for ν sufficiently large, we can write
ỹvj = 1

µν
yνj + (1− 1

µν
)0 ∈ Y j. The attainability condition requires:∑

j∈F
∑

l[ỹ
Svj(k, l) + ỹBvj(k, l)] ≤ 1

µν

∑
i∈H
∑

l r
i(k, l)∑

j∈F
∑

l w̃
vj(k, l) ≥ − 1

µν

∑
i∈H
∑

l r
i(k, l)

Observe that by definition the sequences ỹνj are bounded since |ỹνj| ≤ 1. Consider
the vector (ỹν1, ỹν2, · · · ỹν#F ). Because this sequence is bounded (immediate to show
that it is bounded by |F |) there exist a converging sub-sequence that converges to a
limit (ỹo1, ỹo2, · · · , ỹo#F ) where ỹoj ∈ Y j, by P.III (Y j closed). The right hand side
of the inequalities above imply, in the limit: − 1

µν

∑
i∈H
∑

l r
i(k, l)→ 0. We have:∑

j∈F
∑

l ỹ
ojS(k, l) +

∑
j∈F
∑

l ỹ
ojB(k, l) ≤ 0∑

j∈F
∑

l w̃
oj(k, l) ≥ 0

Hence they imply:∑
j∈F
∑

l ỹ
ojS(k, l) +

∑
j∈F
∑

l ỹ
ojB(k, l) +

∑
j∈F
∑

l w̃
oj(k, l) ≤ 0 since

∑
l w̃

oj(k, l) is

always non-positive. Moreover, from the nonpositivity of w̃oj(k, l) it must be that∑
l

∑
j∈F w̃

oj(k, l) ≤ 0. Together with
∑

j∈F
∑

l w̃
oj(k, l) ≥ 0 it must be the case

that:∑
l

∑
j∈F w̃

oj(k, l) = 0

This term, for each k, is the sum of (N−1) ·#F terms. But then, since each w̃oj(k, l)
is non positive it must be the case that for each (l, k), for each j ∈ F , w̃oj(k, l) = 0.
Hence, for each j ∈ F we have: w̃oj = 0. Notice now that, since Y j is closed for
every j, (ỹojS, ỹojB, w̃oj) ∈ Y j. But then, by condition P.IV (i), w̃oj = 0 implies
(ỹojS, ỹojB, w̃oj) = 0.

But then for each j ∈ F, |ỹvj| → |ỹoj| = 0 6= 1 which shows the desired contra-
diction. That is, there is no such firm j′ for which the attainable set is unbounded.
Then the set of attainable transactions as a subset of Y j is bounded for every j ∈ F .

Remark : Incidentally, since the attainable set for every firm j is bounded and
there are a finite number F of firms, the attainable set for the whole economy is also
bounded.

13.2 Lemma 2

Lemma 2. Let p ∈ R2N(N−1)

+ . B(p), Sj(p), and Sj†(p) are homogeneous of degree zero
in p.
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Proof: By inspection.

13.3 Lemma 3

Lemma 3. Assume P.I through P.IV. Then S̃j†(p) and S̃j(p) are nonempty, convex-
valued, and upper hemicontinuous throughout p ∈ ∆. Let (yjS, yjB) ∈ S̃j(p) be at-
tainable. Then (yjS, yjB) ∈ Sj(p). Let (yjS, yjB, wj) ∈ S̃j†(p) be attainable. Then
(yjS, yjB, wj) ∈ Sj†(p).

Recall P.I, P.II, P.III, P.IV.

S̃j(p, π) :={(yB, yS)|(yB, yS, w) = arg max (q, q + π) · (yjS, yjB + wj)

subject to (yB, yS, w) ∈ Y j ∩B(q, π)×RN(N−1) ∩Ψ3}

Proof. The proof will use the maximum theorem. We first check the hypotheses.
Define C(q, π) := {(yB, yS, w) ∈ Y j∩B(q, π)×RN(N−1)}∩Ψ3. Observe that C(q, π) is
a continuous correspondence in (q, π) because B(q, π) is a continuous correspondence.
Moreover, for any (q, π), C(q, π) is closed and bounded. Closed-ness follows from
definition as the intersection of closed sets. Bounded-ness follows from Ψ3 being
bounded. By the Heine-Borel theorem C(q, π) is compact. C(q, π) is compact valued.
Moreover recall that (q, q + π) · (yjS, yjB + wj) is a continuous function of p. Then,
by the maximum theorem, the correspondence
C∗(q, π) := {arg max (q, q + π) · (yjS, yjB + wj)|(yB, yS, w) ∈ C(q, π)} is nonempty,
compact valued and upper hemicontinous. It remains to show that C∗(q, π) is convex
valued. Recall that (q, q + π) · (yjS, yjB + wj) is linear in (yjS, yjB, wj), implying
that the upper level set is convex. Fix (q, π). Let c∗ be the maximum for (q, q + π) ·
(yjS, yjB+wj) on C(q, π). The upper level set {(yB, yS, w)|(q, q+π) ·(yjS, yjB+wj) ≥
c, (yB, yS, w) ∈ C(q, π)} = C∗(q, π) is convex. Because the choice of (q, π) was
arbitrary we have convex valued-ness of the C∗(·) correspondence. Recognize that
C∗(q, π) = S̃j†(q, π) which finishes the proof of the first part.

Let (y◦S, y◦B, w◦) ∈ S̃j†(p). Suppose contrary to the lemma there is (yS, yB, w) ∈
Y j, (yS, yB, w) ∈ Sj†(p) so that (q, q+π) · (yS, yB +w) > (q, q+π) · (y◦jS, y◦jB +w◦j).
Then for 1 > α > 0, α 6= 0, 1, sufficiently large, there is α(y◦S, y◦B, w◦) + (1 −
α)(yS, yB, w) ∈ Y j ∩Ψ3 by convexity of Y j.
But then (q, q+π)·[α(y◦S, y◦B+w◦)+(1−α)(yS, yB+w)] > (q, q+π)·(y◦jS, y◦jB+w◦j);
a contradiction.

13.4 Lemma 4

Lemma 4. Let ŷ ∈ Ψ3#F .
(i) Then D̃i(p, ŷ) is nonempty and homogeneous of degree zero in p. Ãi(p, ŷ) is con-
tinuous (upper and lower hemicontinuous) throughout ∆ × Ψ3#F and convex-valued.
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D̃i(p, ŷ) is upper hemicontinuous throughout ∆ and convex-valued.
(ii) Let xi ∈ D̃i(p, ŷ) be attainable. Then xi ∈ Di(p, ŷ).

Remark: Part (ii) says that if the length constraint in D̃i(p, ŷ) is not a binding
constraint then it can be deleted, and xi is optimizing subject to distribution and
budget only, without the requirement that household i limit the size of its plans.

The proof of Lemma 4 takes place in several steps. In order to demonstrate
upper and lower hemicontinuity of Ãi(p, ŷ) we’ll characterize it as the intersection of
many more elementary sets, Λi

l,k(p, ŷ), each of which is shown to be upper and lower
hemicontinuous. We introduce a lemma of Green and Heller (1981) to demonstrate
that the intersection — and hence Ãi(p, ŷ) — is continuous. D̃i(p, ŷ) is the set of
maximizers of ui in a translate of Ãi(p, ŷ). Then the theorem of the maximum leads
to upper hemicontinuity of D̃i(p, ŷ). A conventional argument focusing on convexity
leads to equivalence to Di(p, ŷ).

Proof. We recall the definition of the quantities of interest:

Ãi(p, ŷ) := B(p) + {
∑

j∈F Θij
(
ŷjS, ŷjB + ŵj

)
+ ri} ∩Ψ2

D̃i(p, ŷ) =
{
{arg maxui(x)|x ∈ [Ãi(p, ŷ) ∩W i]} − {ri +

∑
j∈F

Θij[(yjS, yjB + wj)]}
}
.

where

B(p) := {x ∈ R2N(N−1)|q(k, l)xS(k, l) + [q(k, l) + π(k, l)]xB(k, l)

+ q(l, k)xS(l, k) + [q(l, k) + π(l, k)]xB(l, k) ≤ 0, for 1 ≤ k 6= l ≤ N}

Let Ψ3#F be the #F-fold Cartesian product of Ψ3 .

First we will characterize properties of the Ãi(p, ŷ) correspondence. Non-emptiness

follows from compactness of Ψ2, 0 ∈ B(p), and ri ∈ R2N(N−1)
+ , ri >> 0.

Further,
∑

j

∑
l 6=k Θij

(
ŷjS(k, l), ŷjB(k, l) + ŵj(k, l)

)
is non-negative, by P.IV(ii). Ho-

mogeneity of degree 0 follows immediately from homogeneity of degree 0 of B(p) and
the definition of Ãi(p, ŷ). Incidentally Ãi(p, ŷ) is compact because it’s the (trans-
lated) intersection of a compact set and a closed set, so the intersection is closed and
bounded and, by Heine-Borel theorem, compact. B(p) is convex by construction.
Moreover, Ãi(p, ŷ) is defined as the intersection of convex sets, hence it’s convex.

The core of the proof is to show continuity of Ãi(p, ŷ). We will show upper hemi-
continuity and lower hemicontinuity separately with the use of an auxiliary lemma.
Consider x ∈ Ãi(po, ŷo). Then x − (

∑
j∈F Θij · (ŷjoS, ŷjoB + wjo) + ri) ∈ B(po). We

introduce a useful construction below.
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For any pair (l, k) define the correspondence:

Λi
l,k(p, ŷ) :=

{
x ∈ R2N(N−1) such that:

x+

(∑
j∈F

Θij · [ŷjS, ŷjB + ŵj] + ri

)
∈ W i and

q(k, l) · xS(k, l) + [q(k, l) + π(k, l)] · xB(k, l)

+ q(l, k) · xS(l, k) + [q(l, k) + π(l, k)] · xB(l, k) ≤ 0

}

Note that Λi
l,k(p, ŷ) = Λi

k,l(p, ŷ).
Remark: For a given (p, ŷ),Λi

l,k(p, ŷ) is the space of all trade vectors available to i
that respect the budget constraint at trading post (l, k) at the prevailing prices p and
economic activity ŷ. The relevant information for prices and transactions only con-
cerns the (l, k) and (k, l) components (for both bid and ask, wholesale and retail) of
the price and transaction vectors because these are the only two commodities traded
at the particular trading post. There are N(N−1)

2
such trading posts.

We know that, for a trade commodity vector to be feasible it needs to respect all
budget constraints at all trading posts simultaneously. As such we can write:

Ãi(p, ŷ) =
⋂
l,k

Λi
l,k(p, ŷ) ∩Ψ2

Recall that no provisional bound is imposed on each of the Λl,k, that is, each of the
x in the Λl,k are not required to lie in Ψ2. Conversely, elements of the Ãi(p, ŷ) are in
the provisionally bounded set.

The reason of this construction lies in the following lemma:

Lemma (Green and Heller, 1981). Let X and Y be subsets of Euclidean space1.
Let Γ1 : X ⇒ Y . Γ2 : X ⇒ Y . Γ3 : X ⇒ Y . Γ4 : X ⇒ Y be correspondences.

(i) If Γ1,Γ2 are two upper hemicontinous closed-valued correspondences such that
Γ1(xo) ∩ Γ2(xo) 6= ∅ then Γ(xo) := Γ1(xo) ∩ Γ2(xo) is upper hemicontinuous.

(ii) If Γ3,Γ4 are two lower hemicontinous convex-valued correspondences such that
int (Γ3(xo))∩ int (Γ4(xo)) 6= ∅ then Γ(xo) := Γ3(xo)∩Γ4(xo) is lower hemicontinuous.

A plan of the proof of Lemma 4 is :

1We note that Y is simply a generic subset of the Euclidean space, it bears no relation with the
Y or Y j in the treatment of the paper.
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• 1) Fix the pair (l, k). Show that the correspondence Λi
l,k(p, ŷ) is upper and lower

hemicontinuous in (p, ŷ).

• 2) Verify that the conditions for Green & Heller (1981) hold.

• 3) Conclude by induction that Ãi(p, ŷ) is upper and lower hemicontinuous.

Fix a pair (l, k). Consider the correspondence Λi
l,k(p, ŷ) defined above.

1a) Upper Hemicontinuity of Λi
l,k(p, ŷ):

Consider a sequence (pν , ŷν) ∈ ∆ × Y such that (pν , ŷν) → (po, ŷo) and xν ∈
Ãi(pν , ŷν) as well as xν → xo. We want to show xo ∈ Ãi(po, ŷo). Suppose not.
Because Ãi(po, ŷo) is closed we can take an open set U around xo which guarantees
that U ∩ Ãi(po, ŷo) = ∅. But then, we must have:

qo(k, l) · xoS(k, l) + [qo(k, l) + πo(k, l)] · xoB(k, l)

+ qo(l, k) · xoS(l, k) + [qo(l, k) + πo(l, k)] · xoB(l, k) > ε

with ε > 0, because xo must be unfeasible at (po, ŷo). But then, since each of the
xν ∈ Ãi(pν , ŷν) we have, by the definition of the budget set:

qν(k, l) · xνS(k, l) + [qν(k, l) + πν(k, l)] · xνB(k, l)

+ qν(l, k) · xνS(l, k) + [qν(l, k) + πν(l, k)] · xνB(l, k) ≤ 0

for all ν. But then, by the order limit theorem, we must have limν→∞ LHSν ≤ 0.
Thus, a contradiction. We conclude that xo ∈ Λi

l,k(p, ŷ) so Λi
l,k(p, ŷ) is upper hemi-

continuous.

Remark: There is a shorter proof that leaves out many of the details. Consider the
graph of the correspondence Λi

l,k given by Gk,l := {(p, ŷ,Λi
l,k(p, ŷ)} ∈ ∆×

∏
j Y

j×W i.
Then the budget constraint at trading post (k, l) can be expressed as a function
fk,l : ∆×

∏
j Y

j ×W i → R where the explicit formula for f is given in the equation

above. Moreover, Gk,l = f−1
k,l ((−∞, 0]) when the budget constraint is respected. But

fk,l is clearly a continuous function (it only involves sums and multiplications) and
since (−∞, 0] is closed in R, it follows that Gk,l is also closed in ∆×

∏
j Y

j×Ψ3 since
it’s the pre-image of a closed set under a continuous function. By the Closed Graph
Theorem Λi

l,k(p, ŷ) is an upper-continuous correspondence which is the desired result.

1b) Lower Hemicontinuity of Λi
l,k(p, ŷ):

Let (pν , ŷν)→ (p◦, ŷ◦), x◦ ∈ Λi
l,k(p

◦, ŷ◦). We seek xν ∈ Λi
l,k(p

ν , ŷν) so that xν → x◦.
Recall that x◦S(k, l) ≤ 0 , x◦B(k, l) ≥ 0.
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Here’s how we’ll construct xν . For k′, l′ 6= k, l the choice of xν(k′, l′), xν(l′, k′)
is unrestricted by the specification of Λi

l,k(p
ν , ŷν) so we can set xν(k′, l′), xν(l′, k′) =

x◦(k′, l′), x◦(l′, k′).
For k, l here’s the logic of the construction. Recall that the superscript S denotes

i’s delivery at bid prices to the trading post. For xνS(k, l) , how much (k, l) can
household i arrange to deliver to the trading post? It is limited by its availability
of k from all sources — endowment and dividends. If that’s less than x◦S(k, l) then
i should deliver what it can. For ν sufficiently large, the availability will approach
x◦S(k, l). If the availability is greater, then it is sufficient to deliver x◦S(k, l). Similarly
for xνS(l, k).

The superscript B denotes i’s acquisitions at ask prices from the trading post. For
xνB(k, l) how much (k, l) can i afford to acquire at (pν , ŷν) ? That depends mainly on
the values just established, xνS(k, l), xνS(l, k) , that i delivers to (k, l), evaluated at
pν . How does that compare to the value of x◦B(k, l) and x◦B(l, k) at pν? That’s the
fraction in the specification for xνB(k, l) below. When the budget in the numerator is
bigger than the budget in the denominator then i can afford x◦B(k, l) at pν . And for ν
sufficiently large, i will converge on fully affordable. When i has an even more ample
budget, it is sufficient just to plan on xνB(k, l) = x◦B(k, l). The calculation becomes
trickier when budgets are zero, as may occur if prices are zero’s. Then x◦B(k, l) is
fully affordable and is set equal to xνB(k, l). xνS(k, l), xνS(l, k), xνB(k, l), xνB(l, k) are
described below.

There are two settings to keep in mind to determine xνB(k, l) and xνB(l, k), de-
pending on the value at pν of x◦B(k, l) and x◦B(l, k).

If [q◦(k, l) +π◦(k, l)] ·x◦B(k, l) + [q◦(l, k) +π◦(l, k)] ·x◦B(l, k) > 0, then for ν large,
[qν(k, l) + πν(k, l)] · xνB(k, l) + [qν(l, k) + πν(l, k)] · xνB(l, k) > 0 and the fraction in
the specification of xνB(k, l) and xνB(l, k) below is well defined.

On the contrary, when [q◦(k, l)+π◦(k, l)]·x◦B(k, l)+[q◦(l, k)+π◦(l, k)]·x◦B(l, k) = 0,
then the fraction in the description of xνB(k, l) below may not be well defined. If so
the alternative there applies.

Proposed values of xνS(k, l), xνS(l, k) follow, below. Recall that typically x◦S(k, l) ≤
0, so the “max” notation below means choosing the smaller absolute value. Under
(C.VII) the summations in square brackets (that is [ ]) will typically be positive, and
negative when denoted with a minus sign (− ).

Let xνS(k, l) be defined as the maximum between x◦S(k, l) and

−
∑N

m=1,m6=k

[
riS(k,m) + riB(k,m) +

∑
j∈F Θij[ŷνjS(k,m) + ŷνjB(k,m) + ŵνj(k,m)]

]
Simlarly let xνS(l, k) be defined as the maximum between x◦S(l, k) and

−
∑N

m=1,m 6=l

[
riS(l,m) + riB(l,m) +

∑
j∈F Θij[ŷνjS(l,m) + ŷνjB(l,m) + ŵνj(l,m)]

]
Let xνB(k, l) be defined as the minimum between x◦B(k, l) and

|qν(k,l)xνS(k,l)+qν(l,k)xνS(l,k)|
[qν(k,l)+πν(k,l)]x◦B(k,l)+[qν(l,k)+πν(l,k)]x◦B(l,k)x

◦B(k, l)
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when the fraction is well defined.

Similarly, let xνB(l, k) be defined as the minimum between x◦B(l, k) and
|qν(k,l)xνS(k,l)+qν(l,k)xνS(l,k)|

[qν(k,l)+πν(k,l)]x◦B(k,l)+[qν(l,k)+πν(l,k)]x◦B(l,k)x
◦B(l, k)

when the fraction is well defined.

Then xνB(k, l) is the amount of (k, l) to be purchased. It is the smaller of x◦B(k, l)
and the affordable fraction of x◦B(k, l) based on sales of xνS(k, l) and xνS(l, k) (each
determined in the specification above). The affordable proportion is described in
the fraction. The numerator is the budget at bid prices based on the sales. The
denominator is the expenditure, evaluated at pν of the purchases on the (k, l) market
x◦B(k, l) and x◦B(l, k). Not all of these terms need be nonzero, but that is endogenous.
For (k′, l′) 6= (k, l), let xνS(k′, l′) = x◦S(k′, l′), xνB(k′, l′) = x◦B(k′, l′);
xνS(l′, k′) = x◦S(l′, k′), xνB(l′, k′) = x◦B(l′, k′). Then xν ∈ Λi

k,l(p
ν , ŷν) and xν → x◦.

Hence xν is the required sequence.
2) Verifying Conditions for Green and Heller (1981) Lemma: We now

verify the conditions for the Green and Heller (1981) lemma. First, it follows im-
mediately from the definition by a linear inequality that Λi

l,k(p, ŷ) is closed (it’s the
inverse image of a closed set (−∞, 0] under a continuous function, hence closed).
Moreover, since Ψ2 is bounded, so is Λi

l,k(p, ŷ). By the Heine-Borel theorem, Λi
l,k(p, ŷ)

is compact. Now, clearly, 0 ∈ Λi
l,k(p, ŷ) since the zero transaction vector, 0 , sat-

isfies all the inequalities for any (p, ŷ). Hence Λi
l,k(p, ŷ) is not empty. Moreover,

0 ∈ Λi
l,k(p, ŷ) regardless of the choice of the pair (l, k). Convexity is also immediate

for Λi
l,k(p, ŷ) is the intersection of a set defined by a linear inequality, (which is con-

vex) and the convex set Ψ2. Now, recall ri >> 0. We need to show that for any
given price and dividend distribution, the interior of the correspondence Λl,k(p̂, ŷ) is
not empty. To show this, it is sufficient to show that there is a collection cl,k of 5
transaction vector points that are in Λl,k(p̂, ŷ) and are in general position. Recall
that the construction of Λl,k(·) does not constrain any of the non-(k, l) coordinates
of x, other than requiring them to be in W i. Hence we can always augment a set of
5 points (as we obtain below) to a set of 2N(N − 1) + 1 points {cl,k, d} by choosing
a collection {d} to be (the negative of) the standard basis vectors −{el′} for all the
non-(k, l) wholesale coordinates and the standard basis vector {el′} for all the non-
(k, l) retail coordinates of R2N(N−1). Such vectors clearly live in W i. We show below
how to pick the 5 points in the ck,l collection. We emphasize the coordinates for the
k, l, all other coordinates, indicated by the dots, are taken to be 0. Without loss
of generality we may assume that none of the prices are 0, if they are then take lo-
cal transaction vectors x1 = (· · · ,−100, 0, 0, 0, · · · ), x2 = (· · · , 0, 100, 0, 0, · · · ), x3 =
(· · · , 0, 0,−100, 0, · · · ), x4 = (· · · , 0, 0, 0, 100, · · · ) respectively, whenever xi’s price is
0. In general, for nonzero prices take the 0 transaction vector, together with:
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x1 =



...

− r(k,l)+
∑
j∈F

∑
l′ 6=k Θij ŷj(k,l′)

2

0
0
0
...


;

x2 =



...

− r(k,l)+
∑
j∈F

∑
l′ 6=k Θij ŷj(k,l′)

2
[r(k,l)+

∑
j∈F

∑
l′ 6=k Θij ŷj(k,l′)]·q(k,l)

2·[q(k,l)+π(k,l)]

0
0
...


;

x3 =



...
0
0

− r(l,k)+
∑
j∈F

∑
l′ 6=k Θij ŷj(k,l′)

2

0
...


;

x4 =



...
0
0

− r(l,k)+
∑
j∈F

∑
l′ 6=k Θij ŷj(k,l′)

2
[r(l,k)+

∑
j∈F

∑
l′ 6=k Θij ŷj(k,l′)]·q(l,k)

2·[q(l,k)+π(l,k)]
...


where the xk,l coordinates are listed above and all other coordinates are 0. which

are guaranteed to be in general position since r(k, l), r(l, k) > 0 and the quantity∑
j∈F
∑

l′ 6=k Θij ŷj(k, l′) ≥ 0. Moreover, they are clearly in W i, hence they satisfy the
desired conditions. We take ck,l = {x0, x1, x2, x3, x4}. The collection of points {cl,k, d}
preserves general position. Because Λi

l,k(p, ŷ) is convex, their convex hull, co({cl,k, d})
will be contained in Λl,k(p̂, ŷ). By construction co({cl,k, d}) is a 2N(N + 1) dimen-
sional polytope and has non-empty interior, showing the desired requirement.

Hence, there exists an open neighborhood Vk,l (in the subset topology) containing
0. Similarly, for a general correspondence Λi

l′,k′(p, ŷ) there exists a neighborhood Vk′,l′
containing 0. But then, the neighborhood of 0 given by Vk,l ∩ Vk′,l′ 6= ∅ and by the
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definition of neighborhood there exist a non-empty open set V ⊂ int(Vk,l)∩int(Vk′,l′) ⊂
int(Λi

l,k)∩int(Λi
l′,k′) which satisfies the condition in the lemma above. Note that Ψ2 is a

constant correspondence which is closed and trivially upper and lower hemicontinous.

3) Now, by the Green & Heller (1981) lemma and an induction argument, we show
that Ãi(p, ŷ) =

⋂
l,k Λi

l,k(p, ŷ) ∩ Ψ2 is the finite intersection of closed valued, convex-
valued upper and lower hemicontinuous correspondences, hence it’s upper and lower
hemicontinuous.

We have shown that Ãi(p, ŷ) is a continuous correspondence. Then by continuity
of ui(·) and the theorem of the maximum we have: C(p, ŷ) = {arg maxui(x)|x ∈
Ãi(p, ŷ)} is continuous. In this case C(p, ŷ) is exactly the provisionally bounded de-
mand correspondence D̃i(p, ŷ). This finishes the proof of part (i).

Now a short proof of part (ii) of the lemma. Because x ∈ D̃i(p, ŷ) and x is
attainable, we must have |x| < C. We claim x ∈ Di(p, ŷ). Suppose not; then there
is x′ ∈ W i ∩ A(p, ŷ) such that ui(x′) > ui(x). Then ui(αx + (1 − α)x′) > ui(x)
for any α ∈ (0, 1). But choosing 0 < α < 1 large enough must imply that x′′ :=
αx + (1 − α)x′ ∈ Ãi(p, ŷ). But then, ui(x′′) > ui(x) and both x and x′′ ∈ Ψ. So
x 6∈ D̃(p, ŷ), a contradiction.

13.5 Lemma 5: Weak Walras Law

Lemma 5 (Weak Walras Law). Let p = (q, π) ∈ ∆. Let (xiS, xiB) ∈ D̃i(p, ŷ)and
let (yjS, yjB) ∈ S̃j(p).
Then q · [

∑
i

xiS +
∑
j

yjS] + (q + π) · [
∑
i

xiB +
∑
j

yjB] ≤ 0.

Equivalently, q · [
∑
i

xiS +
∑
j

yjS +
∑
i

xiB +
∑
j

yjB] + π · [
∑
i

xiB +
∑
j

yjB] ≤ 0.

Proof. Because (xiS, xiB) ∈ D̃i(p, y), it follows from the definition of the demand
correspondence that, for each individual household we must have:

q · xiS + (π + q) · xiB ≤ 0

Similarly, for each firm j we have (yjS, yjB) ∈ S̃(p) so it must be the case that,
for each j:

q · yjS + (π + q) · yjB ≤ 0
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Consider the value of aggregate excess demand:

q ·

(∑
i

xiS +
∑
j

yjS

)
+ (π + q) ·

(∑
i

xiB +
∑
j

yjB

)

=

(
q ·
∑
i

xiS + (π + q) ·
∑
i

xiB

)
+

(
q ·
∑
j

yjS + (π + q) ·
∑
j

yjB

)

Since, each of (xiS, xiB) ∈ D̃i(p, ŷ) we have

q ·
∑
i

xiS + (π + q) ·
∑
i

xiB =
∑
i

(
q · xiS + (π + q) · xiB

)
≤ 0

since if the first inequality holds for each household i, all the more it holds for
the sum. Hence, the first term of the right-hand-side is not greater than 0. Similarly,
since the second inequality holds for every j, all the more:

q ·
∑
j

yjS + (π + q) ·
∑
j

yjB =
∑
j

(
q · yjS + (π + q) · yjB

)
≤ 0

so the second term of right-hand-side is also no greater than 0. Finally, combining
these two one gets:

q ·

(∑
i

xiS +
∑
j

yjS

)
+ (π + q) ·

(∑
i

xiB +
∑
j

yjB

)
≤ 0

which is the desired result.
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